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Abstract

With an annual per capita consumption of one cubic meter, concrete is the most manufactured
material on Earth. But concrete subject to sustained load creeps, like chewing gum, at a rate
that deteriorates the durability and lifespan of concrete infrastructure. While it is generally
agreed that concrete creep originates from the complex viscous behavior of nanometer-sized
building blocks of concrete, the calcium-silicate-hydrates (C-S-H), the origin of concrete creep
is still an enigma and the creep properties of C-S-H have never been measured directly since
C-S-H cannot be recapitulated ex situ in bulk form.

This thesis develops a comprehensive nano-investigation approach to the assessment of the
microstructure and the mechanical stiffness, strength and creep properties of the fundamental
building block C-S-H. This is achieved by extending the realm of classical indentation analysis
of homogeneous solids to highly heterogeneous, linear-viscoelastic, cohesive-frictional materials.
Applied to and validated for a wide range of sub-stoichiometric cement pastes of different com-
position and processing conditions, the link between material composition, microstructure and
nanomechanical stiffness, strength and creep properties of cement-based materials is assessed.
It is found that C-S-H, exhibiting a unique nanogranular behavior, exists in (at least) three
structurally distinct but compositionally similar forms (Low-Density, High-Density and Ultra-
High Density) which are characterized by packings close to limit packing densities. It is found
that at the nanoscale all C-S-H phases exhibit a logarithmic creep whose magnitude depends
only on the packing of 5-nanometer sized particles and not on mix proportions, processing con-
ditions, etc. Logarithmic creep is an intrinsic creep property of C-S-H. We suggest that the
C-S-H creep rate (~1/t) is due to rearrangement of C-S-H particles similar to the compaction
of vibrated particles, for which the free volume dynamics theory of granular physics provides
a strong argument in favor of its justification. Finally, we show that the logarithmic creep
measured by an indentation test in some minutes time at nanoscales is as exact as macroscopic
creep tests carried out over years. This supports the simple idea that large time scales can be
accessed by looking at small length scales, which is of great engineering importance.
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Chapter 1

Introduction

1.1 Industrial Context

With an annual per capita consumption of one cubic meter, concrete made of Portland cement

is the material the most manufactured on Earth. Portland cement concrete is durable, strong

(its compressive strength can be greater than 100 MPa), and relatively cheap. Every day, about

ten times more concrete is used than all other construction materials together [162], and the

consumption of Portland cement is increasing by more than 5% a year [172]. Since the raw

materials necessary to produce Portland cement are abundant on Earth, this trend is unlikely

to be reversed in the near future. But concrete creeps. Concrete creep can lead to unacceptable

deformations or cause the prestress in a bridge to vanish. Over the lifespan of civil engineering

structures (typically 50 years), the occurrence of creep may require expensive repair. This

repair comes at a high cost. Concrete creep is partly responsible for an estimated 78.8 billion

dollars required annually for highway and bridge maintenance in the United States alone [190].

1.2 Research Motivation

Concrete is an intriguing material. The man-made result of mixing water with cement clinker,

sand and aggregates, concrete develops in a few hours from a liquid state to a solid state,

becoming eventually as hard as rock. By nature, concrete is highly heterogeneous over a large

range of length scales: It is a multiscale heterogeneous material (Fig. 1-1). At the macroscale of
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Figure 1-1: Multiscale structure thought model of concrete (adapted from [184]). Image credits:
level 0 from [154], level I from [135], level II from [128] and level III from [106]

engineering applications, concrete is composed of aggregates and cement paste. At a microscale,

the cement paste itself is heterogeneous, made of several hydration products, the most prominent

being the Calcium-Silicate-Hydrates (C-S-H) phases. At a nanoscale, the different C-S-H phases

are a mix of solid and pores.

Concrete creep, that is the time-dependent behavior of concrete under sustained load, is

complex. This complexity is recognized to stem from the viscous response of C-S-H [3]. However,

concrete creep has been classically investigated at the macroscopic scale for engineering design

purposes (e.g., [132], [83], [15], [113]). The physical origin of concrete creep is still unknown,

as the time-dependent response of C-S-H has never been measured directly. In addition, a

question (seemingly) as simple as ‘how the C-S-H solid fills the space’, i.e., how solid and pores

are distributed within the C-S-H matrix is still the subject of debate [145]. We will refer to this
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distribution of solid within the C-S-H matrix as the microstructure of C-S-H. In contrast, at a

scale above, we will refer to the spatial organization of the hydration products and unhydrated

clinker in the paste as the structure of the paste. Given the characteristic size of the C-S-H

phases (a few microns), the measurement of their mechanical properties cannot be performed

by conventional macroscopic testing, but requires the use of nanomechanical testing techniques

such as nanoindentation.

This research aims to answer the following questions:

Why do cementitious materials creep? And how do elastic, strength and creep

properties of cementitious materials relate to the microstructure of C-S-H?

The ultimate goal of this research, therefore, is to implement the materials science paradigm

for concrete creep; that is, to link composition and microstructure to material performance.

1.3 Research Objectives

A comprehensive approach is presented to address the scientific challenge. The approach is

composed of experimental investigation, theory, numerical simulations and modeling. The effect

of the microstructure of C-S-H on the elastic, strength, and creep properties of the material

from the nanometer scale to the macroscopic scale is studied. The approach is guided by the

following four research objectives:

Objective 1: Develop the analytical tools that allow the measurement of mechanical properties

by indentation testing for cementitious materials. Cementitious materials are multiphase vis-

cous cohesive—frictional materials. We shall build and extend here classical indentation analysis

for elasto-plastic materials and multiphase cohesive—frictional materials [57], to account for the

viscous behavior of the indented material as a prerequisite for our experimental investigation.

This approach is based on continuum mechanics.

Objective 2: Develop the analytical tools that allow the assessment of the microstructure of

C-S-H by indentation testing. Considering the C-S-H solid as a cohesive—frictional material,

a method to obtain the distribution of porosities within the C-S-H matrix is developed. This

approach is based on micromechanics.
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Objective 3: Assess the effect of mix proportions on the microstructure of C-S-H. A nanoin-

dentation testing campaign on a variety of cement pastes is performed to quantify the effect of

mix proportions on the elastic and strength properties of the paste from the nanometer range

to the macroscopic scale. Emphasis is placed on linking the microstructure of C-S-H to elastic

and strength properties.

Objective 4: Assess the time-dependent properties of C-S-H. The final objective of this

study is to study the creep behavior of C-S-H and to link this behavior to microstructure.

We here combine the newly developed tools of time-dependent indentation analysis with the

microstructural information gained by nanoindentation.

1.4 Industrial and Scientific Benefits

Associated with the research objectives are some industrial and scientific benefits. They include:

• Fundamental understanding of the effect of mix design on microstructure and mechanical

properties of cementitious materials.

• Assessment of the viscous properties of the individual hydration products in hardened

cement-based materials.

• Quick measurement of the long-term creep behavior of cementitious materials.

1.5 Outline of Thesis

This thesis is divided into six Parts. The first Part deals with the presentation of the topic.

Parts II and III deal with indentation analysis and develop the analytical tools necessary

to link indentation data to meaningful material properties. Part II focuses on homogeneous

solids. In particular, Chapter 2 studies how existing tools which already exist to back-calculate

the elastic and strength properties of cohesive—frictional materials from indentation data can

be extended when the indented material also exhibits a time-dependent behavior. Chapter 3

develops the tools, that allow the assessment of viscous properties by indentation means.

In contrast to Part II, Part III focuses on heterogeneous solids with heterogeneities which

result either from the microstructure or from the multiphasic composition. More specifically,
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Chapter 4 deals with a porous material whose solid phase manifests itself at a scale much

smaller than the scale of indentation analysis. An indentation technique is developed which

allows the linking of indentation data to constitutive properties and microstructural information

of the solid phase. In contrast, Chapter 5 deals with a multiphase composite whose spatial

heterogeneities are much larger than the scale of indentation analysis. Statistical indentation

techniques are complemented or developed to allow the determination of the intrinsic phase

properties of the composite as well as its homogenized properties. Together, the developments

of Part II and III enable the characterization of highly heterogeneous materials from their

microstructural level to their macroscopic level.

Part IV is devoted to the application of the tools of indentation analysis to cement-based

materials. Chapter 6 introduces a multiscale thought model on the structure of cementitious

materials that will guide the experimental investigation. Chapter 7 deals with the validation of

the tools of indentation analysis developed in Parts II and III for cement-based materials.

Part V deals with the experimental investigation of the link between mix proportions, mi-

crostructure and mechanical performance for cement-based materials. Chapter 8 assesses the

effect of mix proportions on microstructure by considering sub-stoichiometric cement pastes

with a wide range of mix proportions. Chapter 9 focuses on the link between microstructure

and creep properties.

The sixth Part, i.e., Chapter 10, summarizes the results of this study and gives suggestions

for further research.
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Part II

Indentation Analysis of

Homogeneous Solids
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Chapter 2

Assessment of Time-Independent

Elastic and Strength Properties by

Indentation

Indentation analysis aims at linking indentation data to meaningful mechanical properties.

The second Part of this report deals with the indentation analysis of homogeneous solids. It

is composed of two Chapters: The first deals with indentation analysis of time-independent

elastic and strength properties; the second with time-dependent properties. In particular, this

Chapter reviews the classical tools of indentation analysis of homogeneous solids that allow

for the extraction of elastic and strength properties of the indented material. This review

defines a basis for original developments presented in forthcoming Chapters, and the analytical

developments presented here will be of critical importance for the experimental investigation of

the fundamental properties of cement-based materials.

2.1 Introduction

An indentation test consists in pushing an indenter tip of known geometry and mechanical

properties orthogonally to the surface of the material of interest (Fig. 2-1). During the in-

dentation test, the load P applied to the indenter tip and the depth h of the indenter with

respect to the indented surface are continuously monitored, and a P −h curve is recorded (Fig.
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Figure 2-1: Indentation on duralumin with a tungsten carbide conical indenter (from [170]).

2-2). The experimental indentation data is traditionally condensed into two parameters: The

indentation modulus M and the indentation hardness H. Based on continuum contact theory,

the indentation modulus has been classically related to the elasticity content of the indented

half-space and the indentation hardness to strength properties. The underlying concept, which

allows these indentation properties to be linked to material properties, is the self-similarity of

the indentation test. The focus of this Chapter is to review recent developments in indentation

analysis of elastic, elasto-plastic and visco-elasto-plastic materials which enable M (Section

2.3) and H (Section 2.4) to be linked to the elastic and strength properties of the indented

material, respectively.

2.2 Self-Similarity of Indentation Tests

One salient feature of indentation analysis is the self-similarity of the indentation test. A

time-developing phenomenon is called self-similar if the spatial distributions of its properties

at various moments of time can be obtained from one another by a similarity transformation

[7]. Thus the self-similarity of a problem often simplifies its investigation. In indentation

testing, self-similarity implies that the displacement fields at any load P can be inferred from

33



0

0.5

1

1.5

2

2.5

0 100 200 300 400

Indentation Depth h, nm

In
d
en
ta
ti
o
n
 L
o
ad
 P
, 
m
N

Figure 2-2: Typical indentation load P versus indentation depth h response of a nanoindentation
test on cement paste.

the displacement fields at a given load P0. The conditions under which indentation problems

are self-similar were stated explicitly by Borodich et al. [23] [24]:

1. The shape of the indenter probe must be described by a homogeneous function whose

degree is greater than or equal to unity.

2. The constitutive relationships of the indented material must be homogeneous with respect

to the strains or the stresses.

3. During the contact process, the loading at any point must be progressive. That is, as

soon as the indentation load is decreased, the indentation test loses its self-similarity.

2.2.1 Geometry of Indenter Probes and Geometric Similarity

The most common indenter probes are (Fig. 2-3):

• The flat punch indenter probe, which is rarely used in actual indention testing, but which

is (as we will demonstrate) important from a theoretical point of view. The contact surface

between the probe and the indented surface is constant over the entire indentation process,

which greatly simplifies the analysis of the indentation contact problem (Section 2.3.1).
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Figure 2-3: Probes of different geometries and the degree d of the homogeneous function de-
scribing their geometry.

• The spherical indenter probe, which is used mostly for soft materials. At small load

magnitudes, it is possible to solicit the indented material in its elastic range only.

• Pyramidal indenter probes (such as the Berkovich, Vickers, or Cube-Corner indenter

probe), which are the most used indenter shapes. The sharp geometry allows for the

testing of volumes of materials smaller than is the case with probes of other geometries.

However, this sharp geometry generates stress concentrations at the probe tip, so that

the indented material is solicited plastically even at low load magnitudes. Among all

pyramidal probes, the three-sided Berkovich pyramidal probe is the most common, and

it is the one we will use almost exclusively in our experimental investigation.

For all mentioned probes, within a Cartesian coordinate system Ox1x2x3, whose origin is

at the tip of the probe, with x3 going into the depth of the probe (Figure 2-4), the height z of

the surface of the probe verifies:

z(λx1, λx2) = λdz(x1, x2) with λ > 0 (2.1)
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Probe type d B

Flat punch →∞ 1/(an)

Spherical 2 1/(2R)

Pyramidal 1 cot(θeq)

Conical 1 cot(θ)

Table 2.1: Degree d of the homogeneous function and proportionality factor B for several
indenter probes.

Probe type Equivalent half-cone angle θeq

Berkovich 70.32◦

Vickers 70.32◦

Cube Corner 42.28◦

Table 2.2: Equivalent half-cone angle θ for several pyramidal probes.

where d is the degree of the homogeneous function. For axisymmetric probes, Equation (2.1)

can be condensed into:

z(r) = Brd (2.2)

where r is the radius of the probe at a given height z, and B is a proportionality factor that

represents the radius at unit radius (Figure 2-4). The degree d and the proportionality factor

B for all probes considered is given in Table 2.1.

Two objects which can be transformed into each other by dilation or contraction are ‘geo-

metrically similar’. Applied to indenter geometries, two spheres of different radii - and therefore

all spherical indenter probes - are geometrically similar to each other. Likewise, all flat punch

indenter probes are geometrically similar. In contrast, pyramidal and conical indenters are

invariant when contracted or dilated. That is, pyramidal and conical indenters are similar to

themselves. They are said to be ‘geometrically self-similar’.

Making use of this geometric self-similarity, the non-axisymmetric pyramidal probes are

often approximated, for the purpose of indentation analysis, by axisymmetric cones of same

degree d = 1, which greatly simplifies the indentation analysis as shown later on (Section

2.3.1). This is achieved by means of an equivalent half-cone angle (or cone opening angle),

which ensures that the pyramidal probe and the cone have the same cross-sectional area S at a

given height z. The equivalent half-cone angles of common pyramidal probes are given in Table

2.2.
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Figure 2-4: Parameters defining the geometry of an indenter probe. z is the height, S the
cross-sectional area. For an axisymmetric probe, r is the radius.

2.2.2 Material Behavior

For the indentation problem to be self-similar, the constitutive relationships of the indented

material need to be homogeneous with respect to the strains (or strain rates) or stresses; which

means that the operator of constitutive relations F (and thus the stress tensor σ(ε)) must scale

as:

F (λε) = λκF (ε) (2.3)

where ε is the strain tensor, and κ is the degree of the homogeneous constitutive function F .

We note:

• Linear and non-linear elasticity satisfy this requirement, provided that [22]:

σ = C(ε) : ε; C(λε) = λκ−1C(ε) (2.4)

where C(ε) is the secant stiffness tensor; and κ = 1 in the case of linear elasticity.

• Viscoelasticity also satisfies the requirement (2.3), provided that both the elastic and
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viscous behaviors are linear with regard to the applied stress. In fact, in this case, the

time-dependent response as represented by the stress convolution integral scales as [50]

[157]:

σ (λε(t)) = λF(ε(t)); F(ε(t)) =

∫ t

0
C(t− τ) :

d

dτ
ε (τ) dτ (2.5)

where F is a linear operator, and thus κ = 1; and where C(t) is the time-dependent

stiffness tensor.

• The condition is also satisfied for a rigid plastic limit behavior, for which the stress derives

from the dissipation function (or support function) σ : d = π (d); [70]:

σ =
∂π

∂d
(d) (2.6)

where π (d) is a homogeneous function of degree 1 w.r.t. the strain rate tensor d, such

that:

π (λd) = λπ (d) (2.7)

In this case, which will be considered in more detail in Section 2.4, it is readily under-

stood that yield design solutions applied to indentation analysis satisfy the self-similarity

condition (2.3), with κ = 0.

But not all materials satisfy Equation (2.3). An instance of such a material is a linear—elastic

perfectly—plastic material, for which κ = 1 within the elastic domain, while κ = 0 at the limit

of the elastic domain corresponding to the strength limit. That is, there is no unique value

of κ for which Equation (2.3) holds for all strain levels eventually present in the indentation

test, and indentations performed on linear—elastic perfectly—plastic materials are, therefore,

not self-similar. More generally, whenever the material response of the indented half-space

is not uniformly governed by the same class of material behavior identified by the constituent

coefficient κ, the non-homogeneous stress distribution within the indented half-space may entail

a loss of self-similarity of the indentation test. We keep this in mind for later developments.
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Figure 2-5: Geometry of an indentation test. P is the indentation load, h the indentation
depth, hc the contact depth, Ac the projected area of contact, and a the contact radius.

2.2.3 Self-Similar Scaling Relations

Provided relations (2.1) and (2.3) are satisfied, the loading phase of an indentation test pos-

sesses self-similarity. That is, given a known indentation response, represented by load P0,

indentation depth h0, contact depth (hc)0 and projected area of contact (Ac)0 (see Figure 2-5),

the indentation response (P, h, hc, Ac) is obtained from a similarity transformation [21]:

P

P0
=

(
h

h0

) 2+κ(d−1)
d

(2.8)

For instance, for elastic behavior (κ = 1), P ∝ h for a flat punch and P ∝ h 3/2 for a spherical

indenter. In turn, for a conical or pyramidal indentation (d = 1), P ∝ h2 irrespective of the

material behavior. This provides a strong argument in favor of using the Berkovich indenter,

as self-similarity will prevail irrespective of the constitutive relations.

Another relation obtained from the self-similarity of the indentation test is [21]:

h

h0
=

(
Ac

(Ac)0

)d
2

(2.9)

A combination of the previous two scaling relations readily shows that average pressure
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below the indenter –that is the hardness H = P/Ac– scales as:

H

H0
=

(
h

h0

)κ(d−1)
d

(2.10)

Hence, for any rigid plastic behavior (κ = 0) or for any pyramidal or conical indenter shape,

the hardness is constant throughout the loading process, and does not depend on the applied

load.

Finally, noting that Ac = πa2, where a is the contact radius, Eq. (2.9) can be rewritten as:

ad

h
= cst. (2.11)

or equivalently, for axisymmetric probes, for which the contact radius a and the contact depth

hc are linked by hc = Bad (Eq. (2.2)):

hc
h

= cst. (2.12)

Thus, provided self-similarity of the indentation test, the contact height —to— indentation depth

ratio hc/h does not depend on the load P . This result is of critical importance for indentation

analysis and forms much of the basis of indirect methods of determination of the projected area

of contact Ac in the contact problem.

2.3 Indentation Modulus

The indentation modulus M is defined by:

S
def
=

2√
π
M
√
Ac (2.13)

where S = dP/dh is the contact stiffness measured during unloading (Fig. 2-6), and Ac the

projected area of contact between the indenter tip and the indented material (Fig. 2-5). This de-

finition, or manner of reporting the data, was introduced by Bulychev, Alekhin and Shorshorov

[32], and Eq. (2.13) is therefore often referred to as the BASh formula. The focus of this Section

is to link the indentation modulus M to the elastic properties of the indented material. We
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Figure 2-6: Parameters used to describe an indentation test. Pmax is the maximum load, hmax
the maximum depth, hf the residual depth, and Smax the contact stiffness at maximum depth.

start with an elastic material, follow with a cohesive-frictional elasto-plastic material, then a

linear viscoelastic material, and finally a cohesive-frictional linear viscoelastic material.

2.3.1 Linear Elastic Material

Consider an indentation on a linear elastic isotropic material, defined by the elastic constants,

bulk modulus K0 and shear modulus G0. The loading and unloading branches of an elastic

indentation overlap (Fig. 2-7). With κ = 1, the indentation test is assumed to possess perfect

self-similarity.

Dimensional Analysis

A straightforward dimensional analysis [30] of the quantities involved in an indentation test

performed on a linear elastic material allows us to reduce the four independent variables (bulk

and shear modulus, K0 and G0, indentation depth h, and indenter shape factor B of dimension
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load and Smax the contact stiffness at maximum depth. The loading and unloading branches
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function [B] = L1−d) to two; that is:

P = f (K0, G0, h, B) (2.14)

⇓
P

G0h2
= Πα

(
Π1 =

K0
G0

; Π2 =
B

h1−d

)
(2.15)

where the bulk-to-shear modulus ratio K0/G0 = 2 (1 + ν) / (3 (1− 2ν)) is recognized as related

to the Poisson’s ratio ν. For any pyramidal or conical indenter shape (d = 1) we readily confirm

the scaling relation (2.8), while the self-similarity implies that for other indenter shapes (d �= 1):

P

G0h2
= Π

−1/d
2 Π′el (Π

∗
1 = ν) (2.16)

That is,

P =
h1/d+1

B1/d
G0 Π′el (Π

∗
1 = ν) (2.17)
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The contact stiffness thus reads:

S =
dP

dh
=

(
1 +

1

d

)(
h

B

)1/d
G0 Π′el (Π

∗
1 = ν) (2.18)

It has two components: One relating to the probe geometry (the term (1 + 1/d) (h/B)1/d), and

the other to the elastic properties of the indented half-space, G0 Π′el (Π
∗
1 = ν). A determination

of both terms requires some refined analysis based on contact mechanics.

The Galin-Sneddon Solution

Indentation problems are contact mechanics problems: Two bodies (an indenter and a material

half-space) interact mechanically through an area of contact (which is not known a priori

except for the specific case of flat punch indentation). Because of the unknown area of contact,

the governing equations of a contact mechanics problem are non—linear by nature even if the

material behavior is linear. Hertz in 1881 was the first to analytically solve a contact mechanics

problem, namely the contact of two elastic spheres [90]. The indentation of an elastic half-space

by a rigid indenter was first solved by Love for a flat punch [117] and for a conical punch [118].

The general solution for a rigid axisymmetric indenter of arbitrary shape is due to Galin [76]

developed in 1953 in the former USSR. His solution was presented in the USA by Sneddon

[167], and is now known as the Galin-Sneddon solution.

The Galin-Sneddon solution is derived under the assumption of small perturbations, i.e.,

under the assumptions of both small displacements and small deformations. The geometry of

the problem is defined in Figure 2-5. The boundary conditions are as follows:

• Outside the area of contact, the surface of the indented material is stress-free.

• Inside the area of contact, the contact between the indenter tip and the surface of the

indented material is frictionless. Therefore, everywhere at the surface of the indented

material, the stress vector can only have a z−component. Inside the area of contact, the

z-component of the displacement of the surface of the indented material is imposed by

the shape of the indenter.

The solution of the problem so described can be performed with several methods, one being
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the use of Hankel transforms (two-dimensional Fourier transforms) on the polar coordinates ρ

and θ. As a result of the derivation, for an indenter of monomial shape z = Brd (Section 2.2.1),

the indentation load is linked to the indentation depth by:

P =
2

(
√
πB)1/d

M0
d

d+ 1




Γ

(
d

2
+

1

2

)

Γ

(
d

2
+ 1

)




1/d

h1+1/d (2.19)

where Γ(x) is the Euler Gamma function, Γ(x) =
∫∞
0 tx−1 exp (−t) dt, and M0 is the plane

stress modulus:

M0 =
E0

1− ν2 = 4G0
3K0 +G0
3K0 + 4G0

(2.20)

The solution also yields the contact depth —to— indentation depth ratio hc/h:

hc
h

=
1√
π

Γ

(
d

2
+

1

2

)

Γ

(
d

2
+ 1

) (2.21)

As expected from the self-similarity of the indentation test (Section 2.2.3), hc/h for a given

indenter probe is found to be constant. A differentiation of Equation (2.19) with respect to the

indentation depth h combined with Equation (2.21) yields the BASh-Formula (2.13):

S =
2√
π
M0

√
Ac (2.22)

Since hc/h is known, the contact depth hc, and consequently the projected area of contact Ac,

can be calculated from the measured indentation depth h. Thus, all variables in the BASh

formula (2.13) are obtained from the indentation test, and the indentation modulus M0 of the

indented material can be calculated.

In addition to the P − h relationship (2.19), the analytical solution also provides the dis-

placement field u and the stress field σ in the elastic half-space. In the specific case of conical

indentation, these fields at the surface of the indented material read in cylindrical coordinates
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[167]:

uρ(ρ < a, 0) =
1− 2ν

4(1− ν)

ρ

tan θ

[
ln

(
ρ/a

1 +
√

1− (ρ/a)2

)
− 1−

√
1− (ρ/a)2

(ρ/a)2

]
(2.23)

uz(ρ < a, 0) =
1

tan θ

[
a sin−1

(
a

ρ

)
+
√
ρ2 − a2 − ρ

]
(2.24)

σzz(ρ < a, 0) =
1

2 tan θ

E0
1− ν2 cosh−1

(
a

ρ

)
(2.25)

Equation (2.25) shows a stress singularity for ρ = 0 right below the tip of an infinitely sharp

cone.

Relevance of Assumption of Small Perturbations

The Galin-Sneddon solution assumes small perturbations, that is small displacements and small

deformations. Given that infinite stresses (and therefore infinite strains) occur at the tip of a

conical indenter (see Equation (2.25)), the assumption of small deformations is surely not

valid. Furthermore, by assuming small displacements the initial and actual configurations

are merged, and the boundary conditions are expressed in the initial configuration for the

derivation of the Galin-Sneddon solution. With an indenter of half-cone angle θ, the surface of

the indented material rotates by π/2− θ inside the area of contact, which translates to about

20◦ for a Berkovich probe and about 48◦ for a Cube Corner probe! Thus the assumption of

small displacements is not valid either, and the assumption of small perturbations has true

theoretical restrictions when it comes to indentation analysis. On the other hand, the question

of interest for day-to-day indentation analysis is the deviation of the Galin-Sneddon solution

from the actual finite strain and large displacement elastic indentation solution. From the point

of view of dimensional analysis of the elastic problem (Section 2.3.1), this deviation will depend

only on the Poisson’s ratio and the indenter geometry; thus for conical indentation:

S = β(ν, θ)
2√
π
M0

√
Ac (2.26)

where the β-factor captures all deviations from the Galin-Sneddon solution. The β-factor for

elastic indentation was studied numerically by Hay et al. [87], who found that the β-factor is

always greater than unity (see Figure 2-8a). They showed that β differs from unity because
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the displacement of the surface below the indenter has a non-zero radial component for any

compressible material. The Galin-Sneddon solution, which is first-order in nature, disregards

this radial displacement. Taking into account the radial displacement and performing a new

analytical derivation, Hay et al. proposed the following expression for β, which is displayed in

Figure 2-8b:

β(ν, θ) = π

π

4
+ 0.1548

1− 2ν

4(1− ν)
cot θ

[
π

2
− 0.8312

1− 2ν

4(1− ν)

]2 (2.27)

The correction factor depends on both the half-cone angle θ and the Poisson’s ratio ν of the

indented material. β(ν = 0.5, θ) = 1 for any half-cone angle θ. For an incompressible material,

the displacement of the surface has no radial component and the BASh formula (2.13) requires

no correction.

Finite Elasticity of Indenter Probe

The Galin-Sneddon solution was derived under the assumption of a rigid indenter probe. From

a practical point of view, the probe is never rigid. Although stiffer than many materials, probes

are often made of diamond, which has a finite Young’s modulus, Ein ≃ 1, 141 GPa [62], and

Poisson’s ratio νin = 0.07 [62]. Hertz’s original contact solution between two elastic spheres

already accounted for the different elasticity of the two bodies; from which:

1

M0
=

1− ν2in
Ein

+
1− ν2
E0

(2.28)

The finite elasticity of the indenter tip is accounted for by approximating the tip-material system

as two springs in series with respective plane-stress stiffnesses Ein/(1 − ν2in) and E0/(1 − ν2)
[137].

2.3.2 Cohesive-Frictional Elasto-Plastic Material

Consider next an indentation test into an elasto-plastic material. A typical P − h curve of an

elasto-plastic material is displayed in Figure 2-9, showing— as expected— that the loading and

unloading branches do not overlap. This Section reports on recent developments that show
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Figure 2-8: Correction factor β for elastic conical indentation (a) derived from numerical sim-
ulations (adapted from [87]) (b) obtained from Equation (2.27).
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Figure 2-9: Typical P − h curve for an indentation on an elasto-plastic material. Pmax is the
maximum load, hmax the maximum depth, hf the residual depth and Smax the contact stiffness
at maximum depth.

that the BASh formula (2.13), derived for the elastic case, can still be applied to the unloading

branch of the elasto-plastic material response to extract the elasticity content.

Dimensional Analysis

In addition to the set of variables (2.14), the dimensional analysis of the unloading branch of

an indentation test on an elasto-plastic material behavior requires additional variables [48] [57],

namely strength properties and a reference indentation depth at which unloading occurs. For

the purpose of this analysis, we consider the material to be a cohesive-frictional elasto-plastic

material whose strength domain is described by the cohesion C and the friction coefficient µ.

Analogous to (2.14) and (2.15), application of the Π-theorem [30] yields:

P = fU (M0, ν, C, µ, h, hmax, B) (2.29)

⇓
P

M0h2
= Πβ

(
ν;
C

G
;µ;

h

hmax
;
B

h1−dmax

)
(2.30)
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where M0 is the plane-stress modulus (2.20). Differentiation and evaluation at h = hmax of Eq.

(2.30) yields:

S

M0hmax
= 2Πβ + hmax

∂Πβ

∂h

∣∣∣∣
h=hmax

= Πγ

(
ν;
C

G
;µ;

h

hmax
= 1;

B

h1−dmax

)
(2.31)

Furthermore, in elasto-plastic indentation, because of the loss of self-similarity (see Section

2.2.2), the projected area of contact is no longer independent of the material behavior. Per-

forming a similar dimensional analysis for the area of contact during loading yields:

Ac = fAc (M0, ν, C, µ, h,B) (2.32)

⇓
Ac
h2

= Πδ

(
ν;
C

M0
;µ;

B

h1−d

)
(2.33)

Eq. (2.33) is valid during the entire loading phase and consequently at h = hmax as well.

Therefore a combination of Eqs. (2.31) and (2.33) yields a new invariant:

S

M0
√
Ac

h=hmax=
Πγ

(
ν; C

M0
;µ; B

h1−dmax

)

√
Πδ

(
ν; C

M0
;µ; B

h1−dmax

) ≡ Πǫ

(
ν;
C

M0
;µ;

B

h1−dmax

)
(2.34)

From a comparison of Eq. (2.34) with the BASh formula (2.13), we readily find that Πǫ =

2/
√
π in elastic indentation, and Πǫ = 2β

(
ν,B/h1−dmax = cot θ

)
/
√
π (according to (2.26)) when

large elastic deformation and displacement are taken into account. In the case of an elasto-

plastic behavior, dimensional analysis reveals that the β correction factor may also depend

on the strength—to—stiffness ratio, C/M0, and the friction coefficient, µ. This conjecture was

numerically investigated by Cheng and Cheng [45] [46] for conical indentation (d = 1, θ = 68◦)

on elasto-plastic cohesive materials (µ = 0) with a wide range of yield strength —to— Young’s

modulus ratios, σy/E = (C/G)× (1 + ν)−1, Poisson’s ratios, ν, and strain hardening exponent

n (Fig 2-10). They found that the β correction factor in elasto-plastic indentation is almost

insensitive to the plastic properties of the material and of a similar order as the elastic large
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deformation/large displacement correction factor β (Section 2.3.1); that is:

β =

√
π

2
Πǫ = 1.08± 0.04 (2.35)

This result provides strong evidence that the indentation modulusM0 assessed by the the BASh

formula (2.13) is a function of the elastic properties of the indented material only1. Bolshakov

and Pharr [19] also performed numerical simulations of conical indentations on cohesive ma-

terials with and without strain hardening, but considered a cone of half-cone angle of 70.3◦,

which is the equivalent half-cone angle of Berkovich probes. They found that β ≃ 1.07 works

for most materials, although this value may rise for materials with large E/σy ratios. There-

fore, considering a value of β = 1.06 ± 0.06 is probably safe, and disregarding the effect of

the β-factor on the BASh formula (2.13) may lead to overestimating the indentation modulus

M0 = E0/(1− ν2) merely by 6%± 6%.

Effective Indenter

One could argue that, for an elasto-plastic material, the indentation modulus, M0, is a function

solely of the elastic properties, if the unloading branch of an indentation test is (almost) only

elastic, and if the reloading after unloading is also elastic (Figure 2-11). It is useful, however,

to remind ourselves that the very concept of the indentation modulus derives from elastic

indentation analysis based on the self-similarity of the indentation test (see Section 2.2), while

indentation into an elasto-plastic half-space does not possess this self-similarity due to the

non-uniqueness of the constituent coefficient κ in elasto-plastic indentation analysis (κ = 1 in

elastic domain, κ = 0 for the strength limit; see Section 2.2.2). The concept of the ‘effective

indenter’ introduced by Pharr and Bolshakov [147] implicitly addresses this loss of self-similarity

in elasto-plastic indentation analysis.

The concept of the effective indenter (see Figure 2-12) is based on the premise that the

specific pressure distribution below an indenter during elastic unloading and reloading of an

1The result may not come as a surprise, as Cheng and Cheng’s investigation considered a cohesive material
behavior (with and without hardening). Cohesive materials are plastically incompressible. The plastic component
of the indentation response, therefore, is not expected to increase the inaccuracy of the BASh formula due to the
small perturbation assumption. In contrast, the additional incompressible plastic deformation in a zone below
the indenter is expected to correct for possible errors induced by the elastic compressibility.
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a)

b)

Ey /σ

Ey /σ

Figure 2-10: A relationship between
(1− ν2)S
Ea

and σy/E for conical indentation (θ = 68o)

of an elasto-plastic cohesive half-space (a) for a material with no strain hardening (from [46])
and (b) for a material with strain hardening (from [45]). σy is the yield strength, n the strain
hardening exponent.

51



Elastic Recovery Y, 10  cm

A
p
p
li
ed
 L
o
ad
 P
, 
k
g

0
0

500

1000

1500

2000

-3

24681012

Figure 2-11: Unloading-reloading cycle of a conical indentation (θ = 68o) on duralumin. After
a few cycles the loop becomes very narrow (from [170]).

elasto-plastic half-space is that of an effective indenter of unknown geometry, which creates, for

the same load, the same specific pressure distribution. In terms of the self-similarity properties

discussed in Section 2.2, this concept, therefore, shifts the non-uniqueness of the constituent

coefficient κ in elasto-plastic indentation analysis to the indenter geometry, i.e., the probe

geometry coefficient d (see Section 2.2.1). An argument in favor of its justification is the

observation that the "elastic" P − (h− hf ) curve of the unloading of the elasto-plastic indent

with the real indenter is the same as the P − hel curve of the loading of the elastic indent of

unknown geometry. Experimentally, Pharr and Bolshakov observed that the unloading phase

of Berkovich indentation tests on a range of elasto-plastic materials can be well fit with a power

function [147]:

P ≃ c(h− hf )m (2.36)

with the power exponent 1.2 ≤ m ≤ 1.6. Equating P ≃ c(h − hf )m of the real indenter

with P ≃ c(hel)
m of the equivalent indenter, while assuming geometric self-similarity of the

effective indenter shape, an application of the scaling relation (2.8) from Section 2.2.3 with
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Figure 2-12: Schematic representation of pressure distributions below the indenter and concept
of the effective indenter (adapted from [147]).

κ = 1 provides an estimate of d:

d
κ=1
=

1

m− 1
∈
[

5

3
; 5

]
(2.37)

The range of values so obtained is clearly greater than d = 1 that characterizes conical and

pyramidal probes; and comes the closest, according to [147], to an equivalent paraboloid shape,

for which d = 2. It should, however, be noted that the equivalent indenter, if it were to exist,

would most likely not be self-similar. Otherwise said, the effective indenter concept provides

a pragmatic way to circumvent an intrinsically difficult situation of elasto-plastic indentation

analysis, which is the loss of self-similarity. This loss of self-similarity, however, seems to have

a second order effect on the accuracy of the BASh formula (2.13) in extracting an indentation

modulus that relates to the elasticity content of the indented elasto-plastic material.
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Figure 2-13: Increase in the contact depth —to— indentation depth ratio hc/h due to plastic
phenomena for conical indentation in elastic perfectly plastic materials (adapted from [19]). In
conical elastic indentation, hc/h = 2/π. In elasto-plastic indentation, the greater the Young’s
modulus —to— yield strength ratio E/σy, the greater hc/h. When hc/h > 1, the material is said
to ‘pile-up’.

Oliver and Pharr Method

There is, however, one fundamental difference between elastic and elasto-plastic indentation

analysis, which is the determination of the projected area of contact Ac that is required as input

for the use of the BASh formula (2.13). In fact, while elastic indentation solution provides a

direct means to determine the area of contact from the contact depth —to— indentation depth

ratio hc/h provided by the Galin-Sneddon solution (i.e., Eq. (2.21)), the hc/h ratio in elasto-

plastic indentation is a priori unknown (Figure 2-13). Traditionally the projected area of contact

Ac was approximated by the area of the residual imprint of the test, and the residual imprint

was measured optically after the indent was performed. Stillwell and Tabor showed for metals

that the remaining imprint was a good estimate of the projected area of contact at maximum

depth [170]. But measuring the residual imprint after each indent is both time-consuming

and difficult at small scales. This brought about indirect methods of the determination of the

projected area of contact Ac at maximum load, among which the most prominent is the method

proposed by Oliver and Pharr in 1992 [137].

The Oliver and Pharr method provides an indirect estimate of the projected area of contact
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Figure 2-14: Determination of the projected contact area with the Oliver and Pharr method
(from [137]).

at maximum load from the shape of the unloading curve. It is based on the concept of the

effective indenter shape (Section 2.3.2): It considers the unloading curve P ∝ (h− hf )m and

elastic response P ∝ (hel)
m obtained with an indenter of parabolic shape. For such a probe,

the elastic contact depth —to— indentation depth ratio is obtained from (2.21):

hc
h

(d = 2) =
1√
π

Γ

(
3

2

)

Γ (2)
=

1

2
(2.38)

The Oliver and Pharr method is based on the assumption that the elastic contact depth - to -

indentation depth ratio hc/h = 1/2 for parabolic probes applies also to the elastic unloading of

the elasto-plastic indentation:

hc − hf =
1

2
(hmax − hf ) (2.39)

where hf is the residual indentation depth (Fig. 2-14).

Both hmax and hf are data available from the test, so that Eq. (2.39) provides an indirect

means to determine the contact depth hc, and thus the projected area of contact Ac. Fur-

thermore, since the measurement of the residual depth hf is sensitive to surface roughness,

an expression is sought in which hf does not appear. The effective indenter being close to a
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paraboloid, the load-depth relation during unloading is:

P ≃ c(h− hf )3/2 (2.40)

which, after differentiation with respect to h and evaluation at h = hmax, yields:

hmax − hf = 2
P

S
(2.41)

Combining Eqs. (2.39) and (2.41) yields:

hc
hmax

= 1− ε Pmax
Shmax

(2.42)

where ε = 3/4. Since the maximum indentation load Pmax, the contact stiffness S and the

maximum indentation depth hmax are all available from the test, Eq. (2.42) provides a conve-

nient way to estimate the contact depth hc, and thus the projected area of contact Ac. From

an experimental point of view, the effective indenter is not truly a paraboloid (see Equation

(2.36)). But slightly modifying the shape of the effective indenter and repeating the derivation

presented earlier in this Section does not change much the value of ε (for a cone, e.g., ε = 0.72);

and keeping a value of ε = 0.75 for all tests is recommended [137].

Though a powerful tool in indentation analysis, the Oliver and Pharr method has one lim-

itation. It can only capture ‘sink-in’ phenomena, for which hc/h < 1, but not ‘pile-up’, for

which the contact depth is greater than the indentation depth, and which has been observed

experimentally, especially in sharp indentation and for some plastically dilating materials (Fig.

2-13). Despite this limitation, for Berkovich indentation on cementitious materials, Constan-

tinides verified experimentally that the Oliver and Pharr method provides a good estimate of

the projected area of contact [57].

2.3.3 Linear Viscoelastic Materials

The focus of this Section is to study the effect of a time-dependent behavior on the measurable

unloading slope S, and thus on the measurable indentation modulus M . The importance of

considering a time-dependent material behavior on the indentation unloading response is readily
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depicted by Figure 2-15. In fact, due to creep, a bulge can appear in the unloading branch of

the P−h curve, and the initial unloading slope can become negative, S(hmax) < 0. The use of a

negative slope in the BASh formula (2.13) implies a negative indentation modulus M and thus,

according to (2.20), a negative Young’s modulus or shear modulus, which is not admissible.

The aim of this Section is to identify, analytically, the influence of a time-dependent behavior

on the measured contact stiffness, and to derive test conditions for which this influence becomes

negligible. To this aim, we consider the indented material to be linear viscoelastic in the sense

of Eq. (2.5); that is, both the elastic and the viscoelastic behavior are linear w.r.t. the stress

at a material scale, and the indentation problem possesses perfect self-similarity. To investigate

the phenomena at stake, we first introduce a general method for solving linear viscoelastic

indentation problems.

Linear Viscoelastic Contact Problems

Most viscoelastic indentation solutions originate from the method of functional equations devel-

oped for linear viscoelastic contact problems by Radok in 1957 [152] and completed by Lee and

Radok in 1960 [112]. The method of functional equations is an extension of the s-multiplied

Laplace transform method, as formulated by Lee in 1955 [111]. The s-multiplied Laplace trans-

form method consists in eliminating the explicit time dependence of the viscoelastic problem

by replacing all time dependent moduli by their Laplace transform multiplied by the Laplace

parameter s. The corresponding elasticity problem is then solved in the Laplace domain. The

solution, obtained in the Laplace domain, is then translated back into the time domain.

The s-multiplied Laplace transform method, however, is restricted to boundary value prob-

lems, in which the displacement and stress boundary conditions are fixed in time. This is not

the case in indentation problems (except for the flat punch problem), in which the area of

contact changes with time, hence changing a part of the stress boundary outside the area of

contact into a displacement boundary inside the area of contact, and vice versa. This restriction

of the s-multiplied Laplace transform was lifted by Lee and Radok [152] [112], who introduced

and developed the method of functional equations for linear viscoelastic problems with time

dependent boundary conditions. If the boundary conditions are not explicitly expressed within

the set of equations describing the contact problem, the use of the Laplace transform is valid as
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Figure 2-15: Effect of creep on the unloading curve for Berkovich indentation on Aluminum
(from [75]). (a) Load cases and (b) resulting unloading curves. For some load cases, a negative
unloading slope at maximum depth can be observed.
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a mere mathematical tool without physical meaning, and the method of functional equations

can be equated with the s-multiplied Laplace transform method.

For indentation problems, the method of functional equations remains valid as long as the

area of contact (or, equivalently for viscoelastic materials, the penetration depth) increases

monotonically [112]. The restriction of the method to monotonically increasing area of contact

haunted many researchers (e.g., Hunter’s 1960 solution for spherical indentation [94]) and was

finally removed in 1966 by Ting [180], who developed implicit equations for the general case

of indentation in any linear viscoelastic material by any axisymmetric indenter and for any

load history. However, it is a challenge to employ Ting’s implicit formulation, except to a few

very specific load histories, indenter shapes and material behaviors. This explains why Radok’s

method of functional equations is still attractive today [44] [43] [191]. Finally, due to the em-

ployment of the method of functional equations and its restriction to monotonically increasing

areas of contact, most solutions cannot address the question of how viscous phenomena affect

the measured contact stiffness and hence the extracted elasticity properties. However, we show

in Appendix A that the method of functional equations remains valid at the onset of unloading

and can therefore be used to study the effect of viscosity on the measured contact stiffness S.

Effect of Viscosity on Measurement of Contact Stiffness

When applying indentation analysis to an experimental curve, the measured contact stiffness

SU is the slope of the experimental P − h curve at the onset of unloading by:

SU =
dP

dh

∣∣∣∣
h=hmax

(2.43)

As observed in Figure 2-15, because of viscous effects the measured contact stiffness can differ

from the elastic contact stiffness S, defined by:

S =
2√
π
M0

√
Ac (2.44)

where M0 is the elastic indentation modulus. The aim of this Section is to analytically identify

the difference.

The time-dependent behavior of the indented material is described by its bulk relaxation

59



In
d
en
ta
ti
o
n
 L
o
ad
 P

Time

Lτ UτHτ

Figure 2-16: Trapezoidal load case considered for indentation on a linear viscoelastic material.

modulus K(t) and by its shear relaxation modulus G(t). K(t = 0) = K0 is the instantaneous

elastic bulk modulus and G(t = 0) = G0 is the instantaneous elastic shear modulus of the

indented material. The elastic indentation modulus M0 is linked to the elastic bulk and shear

moduli K0 and G0 (see Equation (2.20)):

M0 = 4G0
3K0 +G0
3K0 + 4G0

(2.45)

A rigid axisymmetric indenter of arbitrary shape indents the material of interest, according

to a trapezoidal load case. The load is increased linearly for a time of duration τL, then kept

constant at its maximum value Pmax for a time τH , and finally decreased linearly to zero over

a time τU (see Figure 2-16).

The viscoelastic problem is solved by applying the s-multiplied Laplace transform to the

Galin-Sneddon solution (2.3.1):

̂h1+1/d(s) =
(
√
πB)1/d

2

d+ 1

d

[
Γ(d/2 + 1)

Γ(d/2 + 1/2)

]1/d P̂ (s)

sM̂(s)
(2.46)

where s is the Laplace parameter and f̂(s) is the Laplace transform of f(t). The above equation

60



can be rewritten as:

̂h1+1/d(s) = ĝ(s)sP̂ (s) (2.47)

where g(t) depends on the indented material properties and on the indenter shape, but not on

the loading profile. g(t) is defined in the Laplace domain by:

ĝ(s) =
(
√
πB)1/d

2

d+ 1

d

[
Γ(d/2 + 1)

Γ(d/2 + 1/2)

]1/d 1

s2M̂(s)
(2.48)

If we remind ourselves that a multiplication in the Laplace domain corresponds to a convolution

in the time-domain [157], Eq. (2.48) reads in the time-domain:

h1+1/d(t) =

t∫

τ=0

g(t− τ)
dP (τ)

dτ
dτ (2.49)

=





hH(t) =
Pmax
τL

τL∫

τ=0

g(t− τ)dτ during holding

hU (t) =
Pmax
τL

τL∫

τ=0

g(t− τ)dτ − Pmax
τU

t∫

τ=τL+τH

g(t− τ)dτ during unloading

where the solution during unloading, since derived with the s-multiplied Laplace transform

method (see Appendix A), is only valid at the onset of unloading, i.e., at t = (τL + τH)+.

The rate of penetration of the indenter at respectively the end of the holding phase, ḣH(t− =

τL + τH), and at the onset of the unloading phase, ḣU (t+ = τL + τH) are obtained from a

differentiation of Eq. (2.49) with respect to time:

ḣH(t = τL + τH) =
Pmax(

1 + 1
d

)
h
1/d
maxτL

τL∫

τ=0

ġ(t− τ)dτ (2.50)

ḣU (t = τL + τH) = ḣH(t = τL + τH)− Pmax(
1 + 1

d

)
h
1/d
maxτU

g(0) (2.51)

where g(0) can be obtained from Equation (2.48) by evoking the final value theorem which

links the short-term behavior of a function to its Laplace transform [134], f(t = 0+) =
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lims→+∞ sf̂(s). That is:

g(0) =
(
√
πB)1/d

2

d+ 1

d

[
Γ(d/2 + 1)

Γ(d/2 + 1/2)

]1/d 1

M0
=

(
1 +

1

d

)
h1/dmax

√
π

2M0
(2.52)

where we made use of Eqs. (2.19) and (2.21). Eq. (2.51) thus becomes:

ḣU (t = τL + τH)− ḣH(t = τL + τH) = − Pmax
√
π

2τUM0
√
Ac

(2.53)

Finally, using Equations (2.43) and (2.44), and noting that SU = dP/dh = Pmax/(ḣUτU ), the

above equation is rewritten as:
1

S
=

1

SU
+
ḣH

|Ṗ |
(2.54)

where SU = dP/dh is the apparent (measured) contact stiffness (2.43), while S is the elastic

contact stiffness (2.44), i.e., the contact stiffness one would measure if the unloading phase was

unbiased w.r.t. time-dependent properties; ḣH is the rate of penetration of the indenter at

the end of the holding phase, and Ṗ the rate of unloading. Eq. (2.54) was first obtained by

Feng and Ngan [75] for conical indentation and a specific rheological model. However, as our

derivation shows, it holds for any axisymmetric indenter and any linear viscoelastic material;

i.e., for any self-similar linear viscoelastic indentation problem.

Eq. (2.54) is of great importance to the extraction of the true elasticity content from the

measured unloading slope of a viscoelastic material. It shows that the occurrence of viscosity

during unloading leads to an underestimation of the elastic contact compliance 1/S ≤ 1/SU .

Consequently, if no bulge is present in the experimental P −h curve, a direct application of the

BASh formula with SU would lead to overestimating the indentation modulus of the indented

material. Equation (2.54) suggests two ways of minimizing the viscous effects on the measured

contact stiffness:

• Increase of the unloading rate |Ṗ | = Pmax/τU , which is equivalent to a decrease of the

duration τU of the unloading phase.

• Decrease of the indentation creep rate ḣH at the end of the holding phase. Since the

creep rate of any solid material decreases with time, decreasing ḣH can be achieved by

increasing the duration of the holding phase τH . Chudoba and Richter [51] provided
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experimental evidence for this suggestion, recommending that the holding phase should

be ‘long enough such that the creep rate has decayed to a value where the depth increase

in one minute is less than one percent of the indentation depth’. This recommendation is

about the duration of the holding phase only, whereas Equation (2.54) clearly shows that

the effect of the viscosity on the measured contact stiffness depends on the unloading rate

and on the elastic properties of the indented material as well.

Hence, an appropriate correction of the unloading slope in view of the application of the

BASh formula to extract the instantaneous indentation modulus M0 from an indentation test

on a linear viscoelastic material should read as:

1

M0
= β

(
1

SU
+
ḣH

|Ṗ |

)
2√
π

√
Ac (2.55)

where the correction factor β = β(ν, θ) accounts for the deviations from the Galin-Sneddon

solution due to large deformation and displacements (Section 2.3.1).

2.3.4 Cohesive-Frictional Linear Viscoelastic Material

We cannot conclude this discussion of the indentation modulus without considering a viscoelastic-

plastic behavior, i.e., a combination of the behaviors discussed in Sections 2.3.1, 2.3.2 and 2.3.3.

A typical indentation curve is displayed in Figure 2-2. A significant difference between the

loading and unloading branches is observed, which is characteristic of a plastic behavior. In

addition, at constant maximum load, an increase in depth versus time (here the load was held

at its maximum for 5 s) is observed, which is characteristic of a time-dependent behavior. Such

a combination of elastic, viscous and plastic behavior is expected to entail a loss of the self-

similarity of the indentation test due to the varying values of the constituent coefficient κ for

different stress levels (κ = 1 for linear viscoelasticity, κ = 0 for the strength limit; see Section

2.2.2). On the other hand, it can be argued that this difficulty is akin to the elasto-plastic

indentation analysis discussed in Section 2.3.2 and that the viscoelastic solution (2.54) should

therefore be applicable to cohesive—frictional linear viscoelastic materials as well. Feng and

Ngan [75] showed experimentally that Eq. (2.54) remains valid for Berkovich indentation on

a wide range of metals, i.e., cohesive materials, provided that the area of contact is correctly
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estimated. It is reasonable to extend this reasoning to cohesive-frictional viscoelastic materials,

for which it should be possible to determine the instantaneous indentation modulus M0 from

Eq. (2.55) by means of a holding phase that is ‘long enough’ and/or an unloading rate |Ṗ | that
is ‘fast enough’, so that:

S ḣH

|Ṗ |
≈ SU ḣH

|Ṗ |
≪ 1 (2.56)

But how long the holding phase and how fast the unloading rate should be depends on the

viscous properties of the indented material, which are a priori not known. In other words, in

order to extract meaningful elastic properties from the unloading curve of an indentation test

on a cohesive—frictional linear viscoelastic material, the indentation rate ḣH at the end of the

holding phase and the unloading rate |Ṗ | need to be specified.

2.4 Indentation Hardness

The indentation hardness H is the average pressure below the indenter:

H
def
=

P

Ac
(2.57)

where P is the load applied to the indenter, and Ac the projected area of contact between the

indenter tip and the indented material (Figure 2-5). The concept of hardness can be found as

early as in the 18th century in the work of Réaumur (1683—1757) and Mohs (1773—1839) as

a means of material classification. The first example of engineering application of indentation

methods using the material hardness appeared in the work of the Swedish engineer Brinell,

published in a 1900 international congress in Paris [26]. Pushing a small ball of hardened

steel or tungsten carbide against the surface of the specimen, Brinell empirically correlated the

shape of the resulting permanent impression (indentation) with the strength of the metal alloys.

The merits of Brinell’s proposal were quickly appreciated by contemporaries: Meyer (1908),

O’Neill (1944) and Tabor (1951) suggested empirical relations to transform indentation data

into meaningful mechanical properties. For metals, Tabor suggested a rule-of-thumb relation

between indentation hardness H and tensile strength σy [173]:

H/σy ≃ 3 (2.58)
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Based on this classical result, the indentation hardness is often interpreted as a snapshot of

the strength or plastic properties of the indented material. But indentation hardness is not

a material property and its physical meaning is still subject to debate [48]. The main issue

with using indentation hardness or indentation analysis to back-calculate plastic or strength

properties is the non-uniqueness of the solution of the reverse analysis. Indeed, for cohesive

materials with work-hardening, very different material properties (yield strength-to-Young’s

modulus ratio and work-hardening exponent) can yield identical indentation hardness values,

and even identical loading curves (Figure 2-17).

2.4.1 Dimensional Analysis

To motivate the forthcoming developments, consider the loading phase of an indentation test

on a cohesive-frictional elasto-plastic material. Similar to the dimensional analysis performed

in Section 2.3.2, we consider the two dependent variables in the contact problem [48] which

define the hardness, namely indentation force P and projected area of contact Ac:

P = fL (h,M0, ν, C, µ,B) (2.59a)

Ac = g (h,M0, ν, C, µ,B) (2.59b)

Application of the Π-theorem to (2.59) yields the dimensionless relations:

P

Ch2
= ΠP

(
ν,
C

M0
, µ,

B

h1−d

)
(2.60a)

Ac
h2

= ΠAc

(
ν,
C

M0
, µ,

B

h1−d

)
(2.60b)

A substitution of (2.60) in (2.57) readily yields a new invariant, the hardness—to—solid cohesion

ratio:
H

C
=

ΠP

ΠAc

= ΠH

(
ν,
C

M0
, µ,

B

h1−d

)
(2.61)

For conical indentation (d = 1, B = cot θ) we verify that the hardness does not depend on the

indentation depth h. In contrast, a comparison with the hardness scaling relation (2.10) for

other self-similar indenter shapes (d �= 1) readily reveals that the dimensionless relation ΠH is
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θ

h

Figure 2-17: Set of materials with indistinguishable P − h curves in conical indentation, even
when the half-cone angle θ is varied (from [42]). The materials have distinct uniaxial stress-
strain curves (see inset). The material properties (E(GPa), ν, σy(MPa), n) are (104.23, 0.499,
574.4, 0.2434), (113.4, 0.40, 627.6, 0.2173), (116.9, 0.35, 659.4, 0.2038), (120.0, 0.30, 691.8,
0.1913), (122.2, 0.25, 725.5, 0.1784), (123.9, 0.20, 762.8, 0.1653), and (127.5, 0.0, 947.2, 0.1047)
respectively for mat1 to mat7. σy is the yield strength and n is the work-hardening exponent.
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of the form:

ΠH

(
ν,
C

M0
, µ,

B

h1−d

)
=

(
B

h1−d

)κ/d
Π∗H

(
ν,
C

M0
, µ

)
(2.62)

In this general case, therefore, there is no unique link between material properties and hardness,

as the constitutive behavior affects both the value of the constitutive coefficient κ and the

arguments of the dimensionless function Π∗H . Fortunately, for specific indenter geometries and

constitutive behaviors a unique link between the indentation hardness H and the strength

properties of the indented material can be established. The following Sections review some

relevant cases which we will use in our experimental investigation. The presentation is restricted

to conical indentation, which is representative as well for pyramidal indenter probes. In such a

case, Eq. (2.62) becomes:
H

C
= ΠH

(
ν,
C

M0
, µ, θ

)
(2.63)

2.4.2 Rigid Cohesive-Frictional Material

This Section reviews the application of yield design solutions in hardness indentation analysis.

Such solutions can be found early on in the indentation literature. From slip-line field solutions

for indentation in a rigid cohesive plastic solid by a frictionless rigid wedge, Tabor [173] suggested

a hardness (H) versus yield strength (σy) relationship of the form (2.58), H/σy ≃ 3. Lockett

[116] and Chitkara and Butt [49] developed yield design solutions for conical indentations in

cohesive rigid-plastic solids (without and with friction at the indenter-material interface). More

recently, using the upper bound theorem of yield design, Ganneau et al. [78] [185] [77] developed

a dual indentation approach which allows the determination of cohesion and friction of a Mohr-

Coulomb solid from the dependence of the hardness-to-cohesion ratio on the cone angle:

H

C
= Π′H (µ, θ) (2.64)

where µ = tanϕ is the Coulomb friction coefficient. More generally, the application of yield

design solutions to indentation hardness analysis is based on the premise that the material

half-space, in response to the application of the indentation load P , has exhausted its capacity

to store externally supplied work into recoverable energy, which is equivalent to assuming a

rigid plastic behavior. As a consequence, the hardness relates, by design, only to the strength
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properties of the indented material. The remaining part of this Section reports recent develop-

ments of such a solution for a cohesive-frictional material whose strength behavior is governed

by the Drucker-Prager strength model. It is inspired by the contributions of Cariou and Ulm

[33], and Gathier and Ulm [80].

Bulk Frictional Behavior: Mohr-Coulomb, Drucker-Prager Criterion and Regular-

ization

Two important strength criteria which model pressure-sensitive frictional behavior in stress

space are the Mohr-Coulomb criterion and the Drucker-Prager criterion. The Mohr-Coulomb

criterion is a surface traction criterion reading:

f (T = σ · n) = |Tt|+ µ Tn −C ≤ 0 (2.65)

where Tt = t · (σ · n) is the tangential shear stress on the material surface oriented by unit

outward normal n, and Tn = n · (σ · n) is the normal stress acting on this surface. The

two parameters of the criterion are C, the Mohr-Coulomb cohesion, and µ = tanϕ, the Mohr-

Coulomb friction coefficient, where ϕ is defined as the Mohr-Coulomb friction angle. The Mohr-

Coulomb criterion may also be expressed as a function of the principal stresses, σI ≥ σII ≥ σIII :

f (σ) = σI − σIII + (σI + σIII) sinϕ− 2C cosϕ ≤ 0 (2.66)

The Drucker-Prager criterion can be viewed as a Mohr-Coulomb criterion on the deviatoric

stress plane defined by the orientation of the hydrostatic axis, i.e., n = 1√
3

(uI + uII + uIII),

with uJ , the eigenvectors of the stress tensor, corresponding to principal stress directions.

In contrast to the Mohr-Coulomb criterion, which depends only on the minimum and maxi-

mum principal stresses, the Drucker-Prager criterion involves all three principal stresses. The

confining stress on the deviator stress plane is the mean stress, σm = 1
3I1 = 1

3 tr (σ) =

1
3 (σI + σII + σIII). The shear stress magnitude on the deviator plane is expressed by the

second invariant of the stress deviator, s = σ − σm1, defined as

J2 =
σ2d
2

=
s : s

2
=

tr (s · s)
2

(2.67)
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Figure 2-18: Correspondance between the Mohr-Coulomb and the Drucker-Prager criterion in
the deviatoric stress plane (from [161]).

The Drucker-Prager criterion then reads as a function of these two stress invariants:

f (σ) =
√
J2 + αs σm − cs ≤ 0 (2.68)

where αs is the Drucker-Prager friction coefficient, and cs is the Drucker-Prager cohesion. It is

important to note that there is a limit on the choice of the Drucker-Prager friction coefficient,

αs <

√
3

4
(2.69)

Indeed, it has been shown that this value corresponds to a friction angle of ϕ = 90◦ for the

corresponding Mohr-Coulomb criterion [67].

It is possible to link the Drucker-Prager friction coefficient αs to the Mohr-Coulomb fric-

tion coefficient tanϕ by considering the deviator plane representation of both criteria (Eqs.

2.66 and 2.68), as shown in Figure 2-18. Considering respectively the internal cone and the

compression cone of the Drucker-Prager criterion [161] yields the following links between the

material properties of the Drucker-Prager material (cs, αs) and of the Mohr-Coulomb criterion
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Figure 2-19: Approximation of a Drucker-Prager strength domain by a family of hyperbolic
strength domains (from [80]).

(C, sinϕ):

Compression Cone C = cs
3− sinϕ

2
√

3 cosϕ
sinϕ =

3αs

αs + 2
√

3

Internal Cone C = cs

√
3 + (sinϕ)2

3 (cosϕ)2
sinϕ =

√
3α2s
3−α2s

(2.70)

Finally, from a practical point of view, the Drucker-Prager model involves only regular

functions of the principal stresses, and it is usually easier to handle than the Mohr-Coulomb

criterion. In fact, the Drucker-Prager strength criterion (2.68) can be regularized as the limit

case of a hyperbolic criterion:

f (σ) = 1−
(
σm − S0
A

)2
+

(
σd√
2B

)2
≤ 0 (2.71)

The Drucker-Prager criterion is obtained by letting (Fig. 2-19):





B = αsA

S0 =
cs
αs

A→ 0

(2.72)

There exists a dual approach to define the strength of a material within the context of yield

design theory. It is based on the premise that the material, at plastic collapse, has exhausted
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its capacity to store the external work rate into recoverable elastic energy. As a consequence,

it is entirely dissipated in the form of heat. This leads to introducing the support function

π (d) as the maximal possible value of the locally dissipated work rate or maximum dissipation

capacity of the material:

π (d) = sup
σ∗∈G

σ
∗ : d (2.73)

where G denotes the strength domain. It is then possible to show that if σ is the stress on the

boundary of G maximizing the work rate (i.e., σ : d = π (d)), then σ and d are linked by:

σ =
∂π

∂d
(d) (2.74)

The π function is obtained from the following set of equations:

d =
◦
λ
∂f

∂σ
(σ) (2.75a)

f (σ) = 0 (2.75b)

σ : d = π (d) (2.75c)

The 6 + 1 + 1 = 8 equations allow solving for the 8 unknowns: π (d),
◦
λ and 6 × σij at the

boundary of the strength domain. In particular, in the case of the hyperbolic strength criterion

(2.71), we make use of the fact that:

∂f

∂σ
(σ) =

1

3

∂f

∂σm
(σm, σd)1+

∂f

∂σd
(σm, σd)

s

σd
(2.76)

Thus Eq. (2.75a) gives:





σm − S0 = −A
2

2
◦
λ
dv

s =
B2

◦
λ
δ

(2.77)

While the value of
◦
λ is given by Eq. (2.75b):

(◦
λ

)2
=

(
Adv

2

)2
−
(
B√

2
dd

)2
(2.78)
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It follows:

π (d) = π (dv, dd) = S0dv −
√

(Adv)
2 −
(√

2Bdd

)2
(2.79)

with dv = trd = I ′1 and dd =
√
δ : δ =

√
2J ′2. Letting (2.72) in (2.79) yields π (d) = (cs/αs) dv,

which is the π− function of a Drucker-Prager material [158]. We readily verify that π (d) is a

homogeneous function of degree 1 (i.e., π (λd) = λπ (d)) and that the stress σ on the boundary

of the strength domain is:

σ =
∂π

∂d
(λd) =

∂π

∂d
(d) (2.80)

Equation (2.80) shows that the constitutive coefficient κ of the constitutive operator (2.3) that

links stresses to strain rates in yield design, (F (λd) = λκF (d)) is κ = 0.

Yield Design Approach

Yield design is based on the following two ideas [61] [158]:

1. Plastic collapse occurs once the material system can not further develop, in response to a

prescribed loading, stress fields which are statically compatible with the external loading

and plastically admissible with the strength of the material. The material system can not

sustain any additional load by means of stresses in the structure which satisfy equilibrium

and which do not exceed the local material strength.

2. Plastic collapse occurs when the work rate supplied from the outside can no longer be

stored as recoverable (free) energy into the system. As a consequence, this work rate

is entirely dissipated in the form of heat. During plastic collapse, the material locally

dissipates the externally applied work at the highest possible rate. Any additional supplied

work is dissipated through plastic yielding in the material bulk and/or (eventually) along

narrow bands of surfaces of discontinuity.

In the case of an indentation test on a rigid plastic material, the external work rate δW
provided to the system by the indenter is:

δW = Ph̊ (2.81)
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where P is the indentation load and h̊ the rate of penetration of the probe into the material.

In the absence of surfaces of discontinuity, the principle of virtual work rate provides the link

between the external work rate and the internal work rate realized by the stress field σ along

the strain rate field d (u∗) in the indented half-space Ω:

Ph̊ =

∫

Ω
σ : d (u∗) dΩ (2.82)

where the strain rate d (u∗) is linked to the velocity field u∗ by:

d (u∗) =
1

2

(
gradu∗ + T gradu∗

)
∀x ∈ Ω (2.83)

The determination of the indentation load P at plastic collapse requires solving, or at least

estimating numerically, the fields σ and d at plastic collapse for a given penetration rate h̊,

under the following constraints:

• At plastic collapse, the strain rate d (u∗) follows an associated flow rule:

d (u∗) = λ̊
∂f (σ)

∂σ
∀x ∈ Ω (2.84)

where λ̊ is a plastic multiplier which must satisfy:

λ̊ ≥ 0; f (σ) ≤ 0; λ̊f (σ) = 0 ∀x ∈ Ω (2.85)

• The velocity field must be kinematically admissible. Considering a frictionless contact

between the indenter probe and the indented material, the velocity field must satisfy the

boundary conditions:

U (x) · n = −
◦
h sin (θ) inside the area of contact (2.86)

|U (x) | → 0 for |x| → ∞ (2.87)

• The stress field σ (x) must satisfy the strength criterion defined by Eqs. (2.71) and (2.72)

and simultaneously the weak form of the equilibrium condition divσ (x) = 0 as expressed
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by Eq. (2.82).

The contact condition (2.86) implies that the yield design solution Ph̊ is proportional to

h̊. In other words, h̊ is a dummy variable which we set equal to h̊ = 1 so that (2.82) yields

the sought expression that links the hardness (2.57) to the dissipation capacity of the material

half-space:

H =
P

Ac
=

1

Ac

∫

Ω
σ : d (u∗) dΩ; h̊ = 1 (2.88)

Estimating the stress and velocity fields solutions of the problem described above was achieved

using the Limit Analysis Solver, developed by Borges [20] [148]. It is based on a finite element

discretization of the model material domain. An axisymmetric mesh is loaded by a conical

indenter with the equivalent half-cone angle of a Berkovich tip. The Limit Analysis Solver em-

ploys both stresses and velocities as degrees of freedom and requires that the stress fields satisfy

equilibrium and the chosen strength criterion, and that the velocity fields be kinematically ad-

missible and obey an associated flow rule. On this basis, the principle of limit analysis is to

directly find a numerical estimate of the stress and velocity fields which obey these conditions

of plasticity. The discrete simulation results were fitted with a continuous function of the form

(2.64):
H

cs
= ΠH (αs, θ = 70.32◦) = A(1 +Bαs + (Cαs)

3 + (Dαs)
10) (2.89)

which provided: 



A = 4.76438

B = 2.5934

C = 2.1860

D = 1.6777

(2.90)

For the specific case of a frictionless material (αs = 0), for which the tensile strength σy is

linked to the cohesion cs by σy =
√

3cs, Eq. (2.89) yields:

H

σy
=

1√
3

ΠH (αs = 0, θ = 70.32◦) ≃ 2.75 (2.91)

This value is in very good agreement with Tabor’s rule of thumb (2.58).

74



2.4.3 Cohesive—Frictional Elasto-Plastic and Viscoelastic-Plastic Material

The yield design solution is strictly speaking only valid if the strength—to—stiffness ratio is zero

and if the loading rate is infinitely fast so that neither the elastic properties nor the viscous

effects affect the hardness—strength property relation. From comprehensive finite element sim-

ulations of conical indentation (θ = 68◦) of frictionless (Von Mises) elasto-plastic solids, Cheng

and Cheng [48] concluded that the hardness—to—strength ratio is not affected by the elastic

properties provided that σy/E < 10−2 (Fig. 2-20), in which case:

H

σy
=

1√
3

ΠH

(
αs = 0,

σy
E
< 10−2, θ = 68◦

)
≃ 2.7 (2.92)

which is in very good agreement with the yield design solution (2.91). For σy/E > 10−2, the

effect of the elasticity leads to a deviation from yield design solution in function of the stiffness—

to—strength ratio and the Poisson’s ratio (Fig. 2-20). Cheng and Cheng results can reasonably

be extended to cohesive frictional materials by considering that yield design approaches are

relevant provided that the cohesion —to— stiffness ratio cs/M0 is small enough. This is the case

for most geomaterials, for which cs/G0 ∼ 10−3 − 10−6.

Viscous effects can also have an effect on the indentation hardness. This is readily under-

stood by considering an indentation test on a visco-elasto-plastic material. During the holding

phase, during which the indentation load is kept constant at its maximum value Pmax, the

time-dependent behavior of the indented material calls for a time dependent indentation rate,

which pushes the tip deeper into the indented material. As a consequence, the area of con-

tact increases over time, and the hardness, according to its definition (2.57), decreases during

the holding phase. Chudoba and Richter [51] did indeed report a time-dependent indentation

hardness which decreases with increasing holding duration (Figure 2-21). Therefore, for the

hardness to be representative of the plastic properties the indentation test should be as short as

possible. On the other hand, if the holding phase is too short, the measurable contact stiffness

SU due to viscous effects is greater than the actual elastic contact stiffness S (Section 2.3.3, Eq.

(2.54)), which leads to an overestimation of the projected area of contact from Eq. (2.42) and

thus an underestimation of the indentation hardness. In other words, two opposing trends need

to be taken into account in the accurate determination of the strength properties from hardness
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Figure 2-20: Relationship between H/σy and σy/E determined by finite element calculations
of conical indentation (θ = 68o) on frictionless (Von Mises) elasto-plastic materials (adapted
from [46]).

measurements on a cohesive—frictional viscoelastic material: The shorter the indentation test

the more representative is the hardness of plastic properties only, while for the indentation

hardness to be correctly measured, the projected area of contact must be accurately estimated,

for which reason the holding phase should not be too short.

2.5 Chapter Summary

Indentation aims to provide, by contact testing, bulk mechanical properties. The review of

current tools of continuum indentation analysis in this Chapter shows that the two indentation

quantities, indentation modulus M and indentation hardness H, are linked respectively to

elastic and strength properties as long as the projected area of contact at the onset of unloading

is correctly estimated. This area of contact is usually estimated with the Oliver and Pharr

method (Section 2.3.2). The BASh formula (2.13) enables the indentation modulus M to be

linked to the elastic properties, while yield design approaches provide the link between the

indentation hardness H and the strength properties of the indented material (Section 2.4).

A preliminary investigation of the effect of a time-dependent behavior on M and H shows
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Figure 2-21: Effect of duration of holding on the measured hardness for an aluminum layer on
a BK7 glass (from [51]).

that viscosity may have a non-negligible effect. In particular, the application of the Oliver and

Pharr method to estimate the projected area of contact requires that viscous effects be negligible

during unloading so that the measured indentation modulusM and indentation hardness H are

indeed representative of the elastic and strength properties of the indented material. The focus

of the next Chapter is precisely to develop the analytical tools that shall allow the extraction

of these viscous properties of a solid from an indentation test.
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Chapter 3

Assessment of Time-Dependent

Properties by Indentation

This Chapter presents original developments of indentation analysis for homogeneous materials

exhibiting a time-dependent behavior. Following the approach in Chapter 2, the focus will be

first on linear viscoelastic materials (linear w.r.t. stresses) before investigating the effect of

plastic deformation on the indentation response. By analogy with uniaxial relaxation and creep

tests we consider both indentation relaxation and indentation creep tests, in which respectively

the indentation depth h (Section 3.2) or the indentation load P is kept constant in time (Section

3.3). The overall goal of these original developments is to identify the viscous properties that

can be assessed by indentation relaxation and indentation creep testing. These analytical

developments will form the backbone of the identification of the fundamental viscous properties

of cement-based materials presented later in this report.

3.1 Preliminaries on Viscoelastic Indentation Analysis

A first encounter of viscoelastic indentation analysis based on the method of functional equa-

tions was presented in Section 2.3.3. As a reminder, the method of functional equations for

indentation analysis remains valid as long as the indentation depth (and thus the area of con-

tact) does not decrease. The principle of solving linear viscoelastic indentation problems by

means of the s-multiplied Laplace transform method consists in eliminating the explicit time
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dependence of the viscoelastic problem by replacing all time dependent moduli by their Laplace

transform multiplied by the Laplace parameter s. The corresponding elasticity problem is then

solved in the Laplace domain. The solution, obtained in the Laplace domain, is then trans-

lated back into the time domain. The method of functional equations has been used by several

researchers to solve the viscoelastic indentation problem for specific rheological models and

indenter probe geometries, e.g., for flat punch indentation [44], for spherical indentation [43]

[140], or for conical indentation [65] [191].

3.1.1 Continuum Material Scale

On a material scale of the continuum, we assume a linear viscoelastic behavior of the indented

material defined by the bulk relaxation modulus K(t) and the shear relaxation modulus G(t).

For such a linear material, the volume and deviator stress histories, σv (t) = 1
3 (trσ) 1 and

σd (t) = σ − σv (t) relate to the volume and deviator strain histories εv = (tr ε)1 and εd =

ε− 1
3εv by the stress convolution integrals [157]:

σv (t) =

∫ t

0
K(t− τ)

d

dτ
εv (τ) dτ (3.1a)

σd (t) =

∫ t

0
2G(t− τ)

d

dτ
εd (τ)dτ (3.1b)

The Laplace transformations of the stress convolution integrals of linear isotropic viscoelasticity

read [50]:

σ̂v(s) = s K̂(s) ε̂v(s) (3.2a)

σ̂d(s) = s 2Ĝ(s) ε̂d(s) (3.2b)

where f̂(s) is the Laplace transform of f(t), and s the Laplace parameter. Hence, σ̂v(s), σ̂d(s),

ε̂v(s) and ε̂d(s) denote the Laplace transforms of σv(t), σv(t), εv(t) and εd(t), whereas K̂(s)

and Ĝ(s) represent the Laplace transforms of the bulk relaxation modulus K(t) and the shear

relaxation modulus G(t).
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The compliance counterparts of K(t) and G(t) are the bulk creep compliance Jv(t) and the

shear creep compliance Jd(t), which appear in the strain convolution integrals [157]:

εv (t) =

∫ t

0
Jv(t− τ)

d

dτ
σv (τ) dτ (3.3a)

εd (t) =

∫ t

0

Jd(t− τ)

2

d

dτ
σd (τ) dτ (3.3b)

The Laplace transforms of the strain convolution integrals read:

ε̂v(s) = s Ĵv(s) σ̂v(s) (3.4a)

ε̂d(s) = s
Ĵd(s)

2
σ̂d(s) (3.4b)

From a comparison of (3.2) and (3.4), it is readily found that Jv(t) and Jd(t) are linked to K(t)

and G(t) in the Laplace domain [157]:

(sĴv(s))−1 = sK̂(s) (3.5a)

(sĴd(s))−1 = sĜ(s) (3.5b)

A similar relation for indentation relaxation and indentation creep testing is still missing,

and it is one focus of this Chapter to derive such relations for viscoelastic indentation testing

carried out either under constant indentation depth conditions (indentation relaxation), or

under constant indentation force conditions (indentation creep).

3.1.2 Indentation Scale

Analogously to (3.1) and (3.2), the application of the correspondence principle of viscoelasticity

to the elastic indentation force relation (2.19) yields:

P (t) = φ

∫ t

0
M (t− τ)

d

dτ
h1+1/d (τ) dτ (3.6)

⇓

P̂ (s) = φs M̂ (s) ̂h1+1/d (s) (3.7)
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where φ (of dimension [φ] = L1−1/d) condenses the indenter specific geometry parameters of

the elastic solution (2.19):

φ =
2

(
√
πB)1/d

d

d+ 1

[
Γ(d/2 + 1/2)

Γ(d/2 + 1)

]1/d
(3.8)

where d ≥ 0 is the degree of the homogeneous function describing the probe geometry, and

B the shape function of the indenter at unit radius (see Tab. 2.1). In turn, the indentation

modulus M in viscoelastic indentation is time-dependent. Application of the correspondence

principle to the elastic indentation modulus M0 →M (t) defined by (2.20) yields:

M (t) → s M̂ (s) = 4s Ĝ (s)
3sK̂ (s) + sĜ (s)

3sK̂ (s) + 4sĜ (s)
(3.9)

where K̂(s) and Ĝ(s) represent the Laplace transforms of the bulk relaxation modulus K(t) and

the shear relaxation modulus G(t) of the indented material, as defined by (3.2). The indentation

modulus M (t) → s M̂ (s) carries all the material scale viscoelastic constitutive information,

while P (t) → P̂ (s) and ̂h1+1/d (s) specify the time-dependent load conditions. The next two

Sections will deal separately with indention relaxation and indentation creep testing.

3.2 Indentation Relaxation Test

3.2.1 Contact Relaxation Modulus

Consider first an indentation relaxation test defined by Heaviside displacement loading:

h(t) = hmaxH (t) (3.10)

where hmax is the maximum indentation depth, and H(t) is the Heaviside function. What

is measured in such a test is the relaxation of the indentation load P (t). An inspection of

the elastic solution (2.19) and viscoelastic solution (3.6) suggests looking for a force relaxation

solution P (t) of the form:
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Indenter shape d B m(t)

Cone (Berkovich) 1 cot(θ)
π cot(θ)

2h2max
P (t)

Sphere 2 1/(2R)
3

4
√
Rh

3/2
max

P (t)

Flat punch →∞ 1/(an)
P (t)

2ahmax

Table 3.1: Expression of m(t) for several indenter shapes.

m(t)
def
=

1

φh
1+1/d
max

P (t) (3.11)

where the modulus m(t) –by design– provides a means to assess the force relaxation P (t).

Expressions of m(t) for several indenter shapes are developed in Table 3.1.

Consider then the Laplace transform of (3.11):

m̂(s) =
1

φh
1+1/d
max

P̂ (s) (3.12)

A combination of Eqs. (3.7), (3.12) and (3.9), while noting that the Laplace transform of

h(t)α = hαmaxH (t) is ĥα(s) = hαmax/s, yields:

m̂(s) = s M̂(s)
̂h1+1/d(s)

h
1+1/d
max

H(t)
= M̂(s) (3.13)

and after back translation into the time domain:

m(t)
H(t)
= M (t) (3.14)

The modulus m (t) corresponds to the time—dependent indentation modulus M (t) that would

be measured in an indentation relaxation test of a linear viscoelastic material subjected to a

Heaviside displacement load history. By analogy with the uniaxial relaxation moduli, it is thus

appropriate to refer to M (t) as the contact relaxation modulus. In such a test, M (t = 0) = M0

corresponds to the instantaneous elastic indentation modulus, so that the normalized indenta-
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tion force relaxation history can be measured from:

M (t)

M0

H(t)
=

P (t)

P0
(3.15)

where P0 = Pmax.

Consider then a displacement load history:

h(t) = hmaxF (t) (3.16)

where F (t) = h(t)/hmax is the normalized displacement load history satisfying d
dtF (t) ≥ 0 (see

Section 2.3.3). Noting for this case that ̂h1+1/d(s) = h
1+1/d
max

̂F1+1/d(s), the Laplace expression

(3.13) of the contact relaxation modulus becomes:

m̂(s) = s M̂(s)
̂h1+1/d(s)

h
1+1/d
max

F(t)
= s M̂(s) ̂F1+1/d(s) (3.17)

Recalling that a multiplication by s in the Laplace domain corresponds to a differentiation in

the time domain, and that a multiplication in the Laplace domain corresponds to a convolution

product in the time domain [157], Eq. (3.17) can be back-transformed into the time domain:

m(t) =
P (t)

φh
1+1/d
max

=

∫ t

0
M(t− τ)

d

dτ

(
F (t)1+1/d

)
dτ (3.18)

The above developments show that the viscoelastic force relaxation solution P (t) can easily be

found from the applied displacement h(t) if the contact relaxation modulus M(t) is known.

3.2.2 Illustration for Some Classical Linear Viscoelastic Behaviors

Equations (3.11) and (3.14) link time-dependent indentation data to the viscoelastic properties

of the indented material. The contact relaxation modulus so defined is independent of the

indenter shape, and M(t) thus provides a snapshot of the linear viscoelastic behavior of the

solid. By way of illustration, we derive in this Section the expressions of the contact relaxation

modulus M(t) for some classical ‘textbook-type’ viscoelastic materials [119], namely the three-

parameter Maxwell Model, the four-parameter Kelvin-Voigt model, and the five-parameter
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Figure 3-1: Three deviatoric creep models. (a) The three-parameter Maxwell model. (b) The
four-parameter Kelvin-Voigt model. (c) The five-parameter Maxwell-Kelvin-Voigt model.

Maxwell-Kelvin-Voigt model (Fig. 3-1(a− c)). For purposes of illustration, only deviatoric

creep is considered, meaning that the volumetric part is time-independent, K(t) = K0. In the

Laplace domain, this translates into:

K̂(s) =
K0
s

(3.19)

Three-parameter Maxwell Model

The three-parameter Maxwell deviatoric creep model (Figure 3-1a) is obtained by introducing

a Maxwell unit of viscosity ηM into the shear behavior. The expression of the viscous evolution

law in the time domain reads:

2ε̇d(t) =
σ̇
d(t)

G0
+
σd(t)

ηM
(3.20)

which, in the Laplace domain, yields:

2ε̂d(s) =
σ̂d(s)

G0
+
σ̂d(s)

sηM
(3.21)
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Applying a Laplace transform to the constitutive equation of linear viscoelasticity (3.1b) gives:

σ̂d (s) = s2Ĝ(s)ε̂d (s) (3.22)

A combination of the two equations above enables an expression for the shear relaxation mod-

ulus Ĝ(s) of the three-parameter Maxwell model to be obtained in the Laplace domain:

Ĝ(s) =

(
s

G0
+

1

ηM

)−1
(3.23)

Finally, a combination of Equations (3.19) and (3.18) yields an expression of the contact relax-

ation modulus in the Laplace domain:

M̂(s) = ηMG0

(
1

sηM +G0
+

9K0
3K0G0 + sηM (3K0 + 4G0))

)
(3.24)

which, with the use of standard Laplace tables (e.g., [134]), can be translated back into the

time-domain:

M(t) = M0 −
E0

2(1 + ν0)


1− e

(

− E0
2(1 + ν0)ηM

t
)
− E0

2(1− ν0)


1− e

(

− E0
6(1− ν0)ηM

t
)


(3.25)

Four-parameter Kelvin-Voigt Model

The four-parameter Kelvin-Voigt deviatoric creep model (Figure 3-1b) is obtained by introduc-

ing into the shear behavior a Kelvin-Voigt unit, i.e., a spring of stiffness GV in parallel with

a dashpot of viscosity ηV . This model can be defined as well by its delayed shear stiffness

G∞ = (1/G0 + 1/GV )−1. The viscous evolution law reads:

G0GV 2εd (t) +G0ηV 2ε̇d (t) = (G0 +GV )σd (t) + ηV σ̇
d (t) (3.26)

whence the shear relaxation modulus Ĝ(s) in the Laplace domain:

Ĝ (s) =

(
s

G0
+

s

GV + sηV

)−1
(3.27)
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A combination of Equations (3.19) and (3.27) yields an expression of the contact relaxation

modulus M̂(s) in the Laplace domain which can be translated back into the time-domain. The

result of this calculation is given in Table 3.2.

Five-parameter Maxwell-Kelvin-Voigt Model

A combination in series of the Kelvin-Voigt unit with the Maxwell unit (Figure 3-1c) yields a

5-parameter deviatoric creep model for which the viscous deformation is given by:

G0ηV ηM 2ε̈d (t)+G0GV ηM 2ε̇d (t) = ηMηV σ̈
d (t)+(G0ηV +G0ηM+GV ηM ) σ̇d (t)+G0GV σ

d (t)

(3.28)

whence the shear relaxation modulus Ĝ(s) in the Laplace domain:

Ĝ (s) =

(
1

G0
+

1

sηM
+

1

GV + sηV

)−1
(3.29)

A combination of Equations (3.19) and (3.29) yields an expression of the contact relaxation

modulus M̂(s) in the Laplace domain which can be translated back into the time-domain. The

result of this calculation is given in Table 3.2.

3.2.3 Effect of Plasticity on Contact Relaxation Modulus

The indented material is now assumed to be not only linear viscoelastic, but also plastic. Plastic

deformations cannot be avoided below a sharp punch (e.g., below a Berkovich tip) and often also

occur below spherical and flat punches. Plastic deformations result in a decrease in load at a

given depth. As a consequence, Equation (3.11) underestimates the contact relaxation modulus.

In other words, when plastic phenomena occur, Equation (3.11) gives time-dependent properties

which are not material properties since they depend on the uncontrolled amount of plasticity

exhibited during the test and therefore on both the load case and the indenter geometry [182].

To overcome this limitation, Zhang and Zhang [201] proposed a procedure based on an effective

flat punch indenter.

Here we show, for a Heaviside displacement, that the plasticity that occurs during an in-

stantaneous displacement loading can be separated from the time-dependent creep deformation
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Rheological model for Contact relaxation modulus M(t)
deviatoric creep behavior

Maxwell M0 −
E0

2(1 + ν0)

(
1− e

(
− E0
2(1+ν0)ηM

t
))
− ...

...− E0
2(1−ν0)

(
1− e

(
− E0
6(1−ν0)ηM

t
))

Kelvin-Voigt M0 −
E20

2(1 + ν0)(E0 + 2GV (1 + ν0))

(
1− e−

t
T4

)
− ...

...− E20
2(1− ν0)(E0 + 6GV (1− ν0))

(
1− e−

t
T5

)

Combined
E0

2(1 + ν0)

1
1
T8
− 1

T9



(
1
T2
− 1

T9

)
e
− t
T9 +(

1
T8
− 1

T2

)
e
− t
T8


+ ...

Maxwell-Kelvin-Voigt ...+
E0

2(1− ν0)
1

1
T6
− 1

T7



(
1
T2
− 1

T7

)
e
− t
T7 +(

1
T6
− 1

T2

)
e
− t
T6




Table 3.2: Analytical expressions of the contact relaxation modulusM(t) for the three deviatoric
creep models described in Figure 3-1.
T2 = ηV /GV ;
T4 = 2ηV (1 + ν0)/(E0 + 2GV (1 + ν0));
T5 = 6ηV (1− ν0)/(E0 + 6GV (1− ν0));
T6 = 12(1−ν0)ηMηV /(E0(ηM +ηV )+6ηMGV (1−ν0)+(E

2
0(ηV +ηM )

2+36η2MG
2
V (1−ν0)

2+12ηMGVE0(ηM −
ηV )(1− ν0))

1/2);
T7 = 12(1−ν0)ηMηV /(E0(ηM +ηV )+6ηMGV (1−ν0)− (E

2
0(ηV +ηM )

2+36η2MG
2
V (1−ν0)

2+12ηMGVE0(ηM −
ηV )(1− ν0))

1/2)
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during the relaxation phase such that the measured force relaxation response P (t) can be di-

rectly linked to the contact relaxation function M(t) by Eq. (3.15):

M(t) = M0
P (t)

P (0+)
= M0

P (t)

Pmax
(3.30)

where M0 = M(t = 0) is the instantaneous indentation modulus of the tested material and

P (0+) = Pmax is the maximum force recorded in the relaxation test, immediately after ap-

plication of the Heaviside displacement. The proof presented next is valid for any type of

time-independent plasticity and any axisymmetric indenter.

Analytical Proof

Let σ0, ε0, ε
p
0 and ξ

0
be the stress, total strain, plastic strain and displacement solution fields

generated instantaneously by the Heaviside step indentation displacement (applied at t = 0+).

The half-space behaves elasto-plastically during the infinitely fast loading. We tentatively

assume that no further plastic deformation occurs during the relaxation phase t > 0+, so that

the half-space behaves viscoelastically after loading. This assumption will be verified later on.

Dividing the stress and strain tensors into their deviatoric (superscript d) and spherical parts

(superscript v), the viscoelastic behavior of the solid during the relaxation phase is governed

by the hereditary integral functions:

σd(t) = 2
∫ t
0+ G(t− τ)

d

dτ
(εd(τ)− (εp0)

d)dt

σv(t) =
∫ t
0+ K(t− τ)

d

dτ
(εv(τ)− (εp0)

v)dt
(3.31)

We restrict ourselves to a plastic linear viscoelastic half-space characterized by a time-invariant

Poisson’s ratio, as frequently admitted in viscoelastic indentation analysis [103] [141], which

implies:

ν(t) = ν ⇒ K(t) ∝ G(t) (3.32)

The stresses, strains and displacements need to satisfy at all times the following field equa-

tions:
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ε(t) = (1/2)
[
∇ξ(t) +t (∇ξ(t))

]

div (σ(t)) = 0
(3.33)

and the following boundary and frictionless contact conditions:

Out of the area of contact Ac: σ(t) · ez = 0

Within the area of contact Ac:





(σ(t) · n) · t = 0

ξ(t) · n = −hmax +Brn

(3.34)

where (n, t) stand for the outward unit normal and tangential vectors of the half-space. At

t = 0+, the solution fields σ0, ε0 and ξ
0

satisfy the field equations (3.33) and the boundary

conditions (3.34), while the constitutive relations (3.31) read:

σ
d
0 = 2G0(ε

d
0 − (εp0)

d) (3.35)

σ
v
0 = K0(ε

v
0 − (εp0)

v) (3.36)

where G0 = G(0) and K0 = K(0) are respectively the elastic shear and bulk moduli of the

indented half-space.

During the relaxation phase (t > 0+), for which the applied displacement is constant,

the area of contact between the indenter and the half-space is also assumed constant. Using

Equation (3.32), the following displacement, stress and strain fields are readily found to satisfy

the set of governing equations (3.31), (3.33) and (3.34):

ξ(t) = ξ
0

ε(t) = ε0 and εp(t) = ε
p
0

σd(t) = [G(t)/G(0)]σd0 = 2G(t)(εd0 − (εp0)
d)

σv(t) = [K(t)/K(0)]σv0 = K(t)(εv0 − (εp0)
v)

(3.37)

Moreover, since G(t) and K(t) are decreasing functions, the maximum stresses are reached

at t = 0+, which justifies a posteriori the assumption that no plasticity occurs after loading.

Therefore the fields (3.37) are the solution of the relaxation indentation test in a plastic linear

viscoelastic solid with time-invariant Poisson’s ratio, and the assumption of a time-invariant
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area of contact between the indenter and the half-space over the relaxation phase is justified.

On this basis, the force relaxation history P (t) for the plastic linear viscoelastic half-space

is derived:

P (t) =

∫

Ac

(σ(t) · n) · ezdA =

∫

Ac

G(t)

G(0)
(σ0 · n) · ezdA =

G(t)

G(0)
P (0+) =

G(t)

G(0)
Pmax (3.38)

where P (0+) is the maximum indentation force recorded immediately after the Heaviside dis-

placement loading. The viscoelastic relaxation solution in the Laplace domain and then in the

time domain, for a time-invariant Poisson’s ratio, is:

M̂(s) = M0
Ĝ(s)

Ĝ(0)
⇒M(t) = M0

G(t)

G(0)
(3.39)

Finally, a combination of (3.38) and (3.39) yields the sought-after relation (3.30) which links

the indentation relaxation function M(t) to the load history P (t).

Strictly speaking, the analytical proof holds for a time-invariant Poisson’s ratio (3.32). This

condition is not fulfilled with the often considered deviatoric creep cases, for which the Poisson’s

ratio ν(t) is time-dependent since:

K̂(s) = K0 ⇒ ν̂(s) =
3K0 − 2Ĝ(s)

6K0 + 2Ĝ(s)
⇒ ν(t) �= cst (3.40)

Nevertheless, for an incompressible material with deviatoric creep, the Poisson’s ratio ν(t) = 0.5

is indeed time-invariant, and Equation (3.30) holds.

Numerical Validation

To confirm the validity of Equation (3.30), numerical simulations of conical indentation relax-

ation tests on a linear viscoelasto—plastic finite element model are performed.

The numerical simulations are carried out with ABAQUS (Dassault Systemes, Nanterre,

France) in large displacements. An axisymmetric mesh refined in several steps around the

indenter probe is used. The included half-cone angle is θ = 70.32◦, which is the equivalent

cone angle of the three-sided pyramidal Berkovich indenter (Section 2.2.1). The displacement

of the indenter probe is imposed, and the load applied to the indenter P (t) is output from the
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numerical simulation. To minimize distortions due to the finite size of the meshed domain, the

simulations are performed with free and fixed boundary conditions at the mesh ends to evaluate

the influence of boundary effects on the simulation. For all simulations, a change in boundary

conditions induces a change in load P (t) less than 0.5%. To simulate an instantaneous loading,

viscous properties are dismissed during the loading phase. As a result, the displacement history

applied to the indenter corresponds to a Heaviside function.

The viscous behavior of the indented material is modeled by a deviatoric Maxwell creep

model, characterized by its viscosity ηM (Figure 3-1a). Two instantaneous Poisson’s ratios are

used in the simulations: ν0 = 0.499 to model an incompressible material and ν0 = 0.25 to

model a compressible material. The incompressible plastic flow is modeled with an associated

Von Mises plasticity model. The yield strength-to-Young’s modulus ratio is σy/E0 = 10−3,

which is a lower bound value for most materials [5].

The indentation modulusM0 = E0/(1−ν20) and the maximum displacement hmax are input

in the numerical simulation. The resulting load history P (t) is output from the numerical

simulation. From Equation (3.30), the normalized contact relaxation function M(t)/M0 =

P (t)/Pmax is calculated. The numerical relaxation function is then compared with the linear

viscoelastic analytical solution for a deviatoric Maxwell creep model (Table 3.2):

M(t) = M0 −
E0

2(1 + ν0)


1− e

(

−
E0t

2(1 + ν0)ηM

)
− E0

2(1− ν0)


1− e

(

−
E0t

6(1− ν0)ηM

)


⇓ (3.41)

M(t)

M0
= G0


e

−
G0t

ηM +
9K0

3K0 + 4G0
e
−

3K0G0t

ηM (3K0 + 4G0)


 .

The comparison of the numerical and analytical results is displayed in Figure 3-2. For an

incompressible material, independent of the plasticity Equation (3.30) yields a perfect evaluation

of the indentation relaxation function of the indented material. A discrepancy of less than

7% is observed in the case of a compressible material. Since this discrepancy is observed for

both the viscoelastic and the plastic viscoelastic materials, this discrepancy is attributed to the
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Figure 3-2: Normalized contact relaxation modulus M(t)/M0 versus time for two different
Poisson’s ratios, calculated from numerical simulations combined with Eq. (3.30) and from
linear viscoelastic analytical solutions Eq. (3.41). (a) Linear viscoelastic material with no
plasticity and (b) plastic linear viscoelastic material with Von Mises plasticity.
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assumption of small perturbations under which the elastic solution is derived (see Section 2.3.1),

and its effect is captured by the β-factor (see Section 2.3.2). Nevertheless, Equation (3.30) gives

very satisfactory results and provides a tool to access, from an indentation relaxation test and

within the range of the β-factor, the contact relaxation modulus M(t) unbiased by plastic

effects.

3.3 Indentation Creep Test

Most indenters are load-controlled, and thus indentation creep tests are easier to perform ex-

perimentally than indentation relaxation tests. The focus of this Section, therefore, is on

indentation creep tests, in which the indentation load is held at its maximum value Pmax while

monitoring the indentation depth h(t). Following previous developments, we first investigate

the indentation creep response of a linear viscoelastic material (Section 3.3.1) to define the

time-dependent material properties that can be assessed by indentation creep testing. Then, in

Section 3.3.3, a plastic linear viscoelastic material behavior is considered.

3.3.1 Contact Creep Compliance

Consider a Heaviside step loading:

P (t) = PmaxH (t) (3.42)

where Pmax is the maximum load, and H(t) the Heaviside step function. An inspection of the

elastic solution (2.19) and viscoelastic solution (3.6) suggests looking for a depth solution h(t)

of the form:

l(t)
def
=

φ

Pmax
h1+1/d(t) (3.43)

where the probe geometry factor φ of dimension [φ] = L1−1/d is given by (3.8). l(t) is homoge-

neous to a compliance, [l]= [m]−1. Expressions of l(t) for several indenter shapes are developed

in Table 3.3.
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Indenter shape d B l(t)

Cone (Berkovich) 1 cot(θ)
2 tan(θ)

πPmax
h2(t)

Sphere 2 1/(2R)
4
√
R

3Pmax
h3/2(t)

Flat punch →∞ 1/(an)
2a

Pmax
h(t)

Table 3.3: Expression of l(t) for several indenter shapes.

Consider then the Laplace transform of (3.43):

l̂(s) =
φ

Pmax
̂h1+1/d(s) (3.44)

A combination of Eqs. (3.7), (3.44) and (3.9), while recalling that the Laplace transform of the

Heaviside load function is P̂ (s)= Pmax/s, yields:

l̂(s) = sL̂(s)
P̂ (s)

Pmax

H(t)
= sL̂(s) (3.45)

where:
(
sL̂(s)

)−1
= sM̂(s) (3.46)

Akin to the uniaxial creep compliance—relaxation modulus relations (3.5), expression (3.46)

establishes, in the Laplace domain, the link between the contact relaxation modulus M̂(s) and

the contact creep compliance, L̂(s). In fact, a back-transformation of (3.45) into the time domain

shows that the compliance l (t) that is measured —by means of Eq. (3.43)— in an indentation

creep test on a linear viscoelastic material is the contact creep compliance:

l (t)
H(t)
= L(t) (3.47)

This contact creep compliance L(t) is defined in the Laplace domain by (3.46) and (3.9), which

allows one to link indentation data (Eq. (3.43)) to meaningful viscoelastic material properties.

Moreover, for any monotonically increasing load history, P (t) = PmaxF (t), for which the

area of contact increases (see Section 2.3.3), the contact creep compliance L(t) provides a means
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to calculate the indentation creep response in both Laplace and time domains:

l̂(s) =
φ ̂h1+1/n (s)

Fmax
= s L̂(s) F̂(s)

⇓ (3.48)

l (t) =
φh1+1/n (t)

Fmax
=

∫ t

0
L(t− τ)

d

dτ
F(τ)dτ

where F̂(s) is the Laplace transform of the normalized loading history F(t) = F (t) /Fmax,

satisfying d
dtF(t) ≥ 0. The above developments show that the depth solution h(t) can easily

be found from the applied displacement h(t) once the contact creep compliance L(t) is known.

L(t) depends neither on the load case, nor on the geometry of the indenter, but depends only

on the viscous properties of the indented material. That is, the contact creep compliance L(t)

provides a snapshot of the linear viscoelastic behavior of the indented half-space.

3.3.2 Illustration for Some Linear Viscoelastic Models

Deviatoric Rheological Models

For purposes of illustration of the contact creep compliance L (t), we consider the three devi-

atoric creep models shown in Figure 3-1.1 For each model, K̂(s) and Ĝ(s) are available (see

Section 3.2.2). Therefore, the contact creep compliance L̂(s) can be calculated with Equation

(3.46) and then translated back into the time domain. By way of example, a linear viscoelastic

material with deviatoric creep governed by a Maxwell unit of viscosity ηM (Figure 3-1a) is

considered. The shear creep compliance Jd(t) is given by:

Jd(t) =
1

G0
+

t

ηM
(3.49)

A substitution of K̂(s) = K0/s and Ĝ(s) = (s/G0 + 1/ηM )−1 into (3.46) allows the determina-

tion of the contact creep compliance in the Laplace space:

L̂(s) =
G0 +K0
4sK0G0

+
1

4s2ηM
− G0ηM

4K0(3K0G0 + (3K0 +G0)sηM )
(3.50)

1The results here presented have been published in [191].
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Rheological model used for Contact creep compliance L(t)
the deviatoric creep behavior

Maxwell unit
1

M0
+

t

4ηM
+

(1− 2ν0)
2

4E0

(
1− e−

E0
3ηM

t
)

Kelvin-Voigt unit
1

M0
+

1

4GV

(
1− e−

GV
ηV

t
)

+
(1− 2ν0)2

4(E0 + 3GV )

(
1− e−

E0+3GV
3ηV

t
)

Combined
5− 4ν0

4E0
+

t

4ηM
+

1

4GV

(
1− e−

t
T2

)
− ...

Maxwell-Kelvin-Voigt unit ...− (1− 2ν0)
2

4E0(
1
T1
− 1

T3
)

[
(

1

T2
− 1

T3
)e
− t
T3 + (

1

T1
− 1

T2
)e
− t
T1

]

Table 3.4: Analytical expressions of the contact creep compliance L(t) for the three deviatoric
creep models described in Figure 3-1.
T1 = 6ηMηV /(E0(ηM + ηV ) + 3ηMGV + (E

2
0(ηV + ηM )

2 + 6E0ηMGV (ηM − ηV ) + 9η
2
MG

2
V )

1/2);
T2 = ηV /GV ;
T3 = 6ηMηV /(E0(ηM + ηV ) + 3ηMGV − (E

2
0(ηV + ηM )

2 + 6E0ηMGV (ηM − ηV ) + 9η
2
MG

2
V )

1/2)

and, after back-transformation into the time domain:

L̂(s) → L(t) =
1

M0
+

t

4ηM
+

(1− 2ν0)
2

4E0


1− e

−
E0t

3ηM


 (3.51)

Interestingly, Equation (3.51) shows that, although the shear creep compliance is linear with

respect to time, the contact creep compliance is not. The contact creep compliance is linear with

respect to time only at large times, i.e., after a transient period. A characteristic duration of this

transient period is the time constant 3ηM/E0. For an incompressible material (ν0 = 0.5), the

transient term vanishes, and the contact creep compliance, akin to the shear creep compliance,

is linear with regard to time.

Using the same methodology, solutions of the form (3.51) are developed for the other rheo-

logical models, namely the 4-parameter Kelvin-Voigt model (Figure 3-1b) and the 5-parameter

combined Maxwell-Kelvin-Voigt model (Fig. 3-1c). These solutions are summarized in Table

3.4.

Deviatoric Logarithmic Creep

It will turn out useful, for application to cement-based materials, to consider a material that

exhibits logarithmic creep. To simplify the derivation, the material is assumed incompressible

(i.e., K0 ≫ G0). The viscous behavior is assumed to be restricted to the shear component only,
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such that:

K(t) = K0 → K̂(s) = K0/s (3.52)

The shear creep compliance of the indented material is a logarithmic function of time:

Jd(t) =
1

G0
+

ln(t/τ + 1)

C
(3.53)

where τ is a characteristic time of the viscous phenomenon, while C –homogeneous to a

modulus– governs the magnitude of the logarithmic creep. The Laplace transform of Eq.

(3.53) reads [134]:

Ĵd(s) =
1

s

(
1

G0
− 1

C
esτ Ei(−sτ)

)
(3.54)

where Ei is the exponential integral, defined by:

Ei(x) =

x∫

−∞

e−t

t
dt (3.55)

From Equation (3.5b) Ĝ(s) is calculated:

Ĝ(s) =
1

s2Ĵd(s)
=

1

s

(
1

G0
− 1

C
esτ Ei(−sτ)

)−1
(3.56)

Substituting (3.52) and (3.56) into (3.9), and the result into (3.46), yields the expression of the

contact creep compliance for logarithmic creep; first in the Laplace domain:

L̂(s) =
1

4s2Ĝ(s)

3K̂(s) + 4Ĝ(s)

3K̂(s) + Ĝ(s)
(3.57)

=
1

4s

(
1

G0
− 1

C
esτ Ei(−sτ)

)
(3.58)

=
1

sM0
− 1

4sC
esτ Ei(−sτ) (3.59)

Then, in the time domain:

L(t) =
1

M0
+

ln(t/τ + 1)

4C
(3.60)
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Therefore, a logarithmic creep at a material scale entails a logarithmic contact creep compliance

L(t), and vice versa: A logarithmic contact creep compliance can be attributed to a logarithmic

material creep.

Lastly, if the assumption of an incompressible material (3.52) is relaxed, the derivation

here performed becomes much more complex. Similar to the Maxwell creep model (see Section

3.3.2), a transient phase appears, during which the contact creep compliance is not logarithmic

with respect to time. The duration of this transient phase must be on the order of τ , which is

the only time scale involved in the problem.

3.3.3 Effect of Plasticity on Contact Creep Compliance

The focus of this Section is an investigation of the effects of plastic deformation on the linear

viscoelastic contact creep compliance. As plastic deformations below the probe result in an

increase in depth at a given load, Equation (3.43) may eventually overestimate the contact creep

compliance [192]. Except for highly creeping materials [165] and for spherical indentations at

very low loads [140] [142], for which plastic deformations are negligible compared to viscous

deformations, and for which the creep compliance of a material can be extracted with confidence

using viscoelastic solutions, neglecting the plastic deformations leads in general to an erroneous

determination of the viscous properties of the material. To overcome this limitation, several

approaches were recently proposed. Oyen and Cook [143] [144] [60], as well as Yang and Zhang

[198], suggested that the total indentation depth be split into an elastic, a plastic and a viscous

part. But their model remains one-dimensional and does not solve the plastic-viscoelastic

problem at the material level. Implicitly evoking the material constitutive level, Zhang et al.

[200] [201] proposed the measurement of viscous parameters by means of loading-unloading-

reloading cycles combined with the concept of the effective indenter introduced by Pharr and

Bolshakov (see Section 2.3.2). But the shape of the effective indenter is a priori unknown, and

the experimental implementation of such a method requires several tests, which makes this

method unappealing for day-to-day indentation creep analysis.

Here we show that the measured indentation depth response h(t) is linked to the contact

creep compliance L(t) by:
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L̇(t) =
2a(t)ḣ(t)

Pmax
(3.61)

where a(t) is the radius of the projected area of contact between the probe and the indented

surface. The proof presented next is valid for any type of time-independent plasticity and any

axisymmetric indenter. One should note that for a linear viscoelastic material Equation (3.61)

is valid, as can be readily observed from a differentiation of Equation (3.43).

Analytical Proof

Instead of a ‘usual’ indentation creep test (for which the load is increased to Pmax and kept

constant), consider the following thought experiment with the following load history (see Figure

3-3):

• Instantaneous loading to Pmax.

• Complete instantaneous unloading.

• Instantaneous reloading to Pmax.

• Creep phase at Pmax.

The indentation depth h(t) over the creep phase of the thought experiment is the same as

over the creep phase of a ‘usual’ indentation creep test. The reloading-creep phase is assumed

to exhibit no plasticity. Under this assumption, which will be discussed later on, the viscoelastic

reloading-creep phase can be itself considered as an indentation creep test in a linear viscoelastic

material. The effect of plasticity (plastic deformations having taken place during the preliminary

loading-unloading cycle) on this indentation creep test is two-fold:

• The indentation is performed by a probe of known geometry on a surface which is plasti-

cally deformed (by the preliminary loading-unloading cycle) and thus of unknown geom-

etry.

• The plastic deformations (which occurred during the preliminary loading-unloading cycle)

lead to a build-up of self-equilibrated residual stresses in the indented half-space.
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Figure 3-3: (a) Load versus time curve and (b) load versus depth curve of the thought experi-
ment. (1) instantaneous loading. (2) instantaneous unloading. (3) instantaneous reloading. (4)
creep phase.
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In what follows, we will first discard the effects of residual stresses and show later how they

may eventually affect the creep response.

Analytical Proof in the Absence of Residual Stresses In the absence of residual

stresses, the effect of plasticity on the reloading-creep phase is limited to the deformation of the

surface of the indented half-space. Therefore the reloading-creep phase is a linear viscoelastic

indentation on a non-flat surface. The method of functional equations (see Section 2.3.3) is used

to convert the reloading-creep phase into an equivalent elastic problem. The equivalent elastic

problem is the elastic indentation of a surface of unknown geometry, which itself is equivalent

to the elastic indentation of a flat surface by an indenter of unknown geometry. The relation

between the contact radius a and the indentation depth h is defined as:

a = f(h) (3.62)

where f(h) is an unknown function. From an application of the BASh-formula (2.13) to the

equivalent elastic problem, the indentation stiffness S is linked to the indentation depth h:

S =
dP

dh
= 2M0a = 2M0f(h) (3.63)

which, after integration, becomes:

P = 2M0F (h) (3.64)

where F (h) is the primitive of f(h) for which F (0) = 0. Therefore, the contact creep compliance

L(t) is linked to the experimental data by:

L(t) =
2F (h(t))

Pmax
(3.65)

Finally, after differentiation, the sought-after relation (3.61) is obtained:

L̇(t) =
d

dt

(
2F (h)

Pmax

)
=

2f(h)ḣ(t)

Pmax
=

2a(t)ḣ(t)

Pmax
(3.66)
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This relation links the measured creep indentation data h(t) to the rate expression of the contact

creep compliance, L̇(t), which is insensitive to the plasticity that occurred during the loading

phase. The stress, strain and displacement field solutions of the reloading-creep phase with no

residual stress, which will later be needed, are denoted by σs(t), εs(t) and ξs(t).

Analytical Proof in the Presence of Residual Stresses The residual stresses con-

secutive to the infinitely fast loading-unloading cycle of the thought experiment are now taken

into account. We restrict ourselves to a linear viscoelasto-plastic half-space characterized by a

time-invariant Poisson’s ratio (see Eq. (3.32)). A loading-unloading cycle with no further re-

loading is first considered. Let σr0, ε
r
0 and ξr

0
be the residual stress and the resulting total strain

and displacement generated by the instantaneous loading-unloading cycle in the elasto-plastic

half-space. Following the reasoning of Section 3.2.3, we show that the stress σr(t), strain εr(t)

and displacement ξr
0
fields are solutions of the residual stress problem:

ξr(t) = ξr
0

εr(t) = εr0

(σr)d(t) = 2G(t)(εr0)
d

(σr)v(t) = K(t)(εr0)
v

(3.67)

The creep phase of the thought experiment presented earlier in this Section is now consid-

ered, and we show that the stress σs(t) + σr(t), strain εs(t) + εr0 and displacement ξs(t) + ξr
0

are the solution fields. Indeed, since (ξs(t),σs(t)) and (ξr
0
,σr(t)) both verify the field equations

(3.31) and (3.33), by linearity their sum does as well. Moreover, the solution to the creep

test with no residual stresses (ξs(t),σs(t)) satisfies the boundary condition (3.34) of the creep

problem, whereas the solution to the residual stress problem (ξr
0
,σr(t)) satisfies zero boundary

condition everywhere. Therefore, their sum still satisfies the boundary condition (3.34) of the

creep problem, and (ξs(t) + ξr
0
,σs(t) + σr(t)) is thus the solution of an indentation creep test

in a linear visco-elasto-plastic material.

The presence of residual stresses due to the loading-unloading cycle introduces only a con-

stant offset in the indenter probe displacement (with regard to the indenter probe displacement

in the absence of residual stresses) and has no influence on the indenter penetration rate. There-
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fore, relation (3.61) remains valid and can be applied to plastic linear viscoelastic indentation

creep tests.

Numerical Validation

To confirm the validity of Equation (3.61), numerical simulations of conical and parabolic

indentation creep tests on a linear-viscoelasto—plastic finite element model are performed. The

numerical simulations are carried out with ABAQUS (Dassault Systemes, Nanterre, France) in

large displacements. An axisymmetric mesh refined in several steps around the indenter probe

is used. To better capture the evolution of the area of contact over the creep phase, extra

refinement of the mesh is introduced around the eventual edge of the area of contact during the

creep phase. For most simulations, the half-cone angle of the probe is θ = 70.32◦, which is the

equivalent half-cone angle of the Berkovich probe (see Section 2.2.1). For two simulations, the

half-cone angle of the probe is θ = 42.28◦, which is the equivalent half-cone angle of the Cube

Corner probe (see Section 2.2.1). To simulate an instantaneous loading, viscous properties are

dismissed during the loading phase.

The viscous behavior of the indented material is modeled with the deviatoric Maxwell

creep model (Fig. 3-1a), characterized by a viscosity ηM . The instantaneous Poisson’s ratio is

ν0 = 0.499. The incompressible plastic flow is modeled with an associated Von Mises plasticity

model. The yield strength-to-Young’s modulus ratio σy/E0 is varied from 10−2 to 10−1. The

duration of the creep phase is equal to three times the characteristic viscous time (1−ν20)ηM/E0.
The indentation modulus M0 = E0/(1 − ν20) and the maximum load Pmax are input into

the numerical simulation. The depth history h(t) and contact radius a(t) are output from

the numerical simulation. With Eq. (3.61), the rate L̇num(t) of the contact creep function is

determined. L̇num(t) is then compared with the linear viscoelastic analytical solution (3.51) of

the deviatoric Maxwell creep model:

L̇an(t) =
1

4ηM


1 +

(1− 2ν0)
2

3
e
−
E0t

3ηM


 (3.68)

For all simulations, L̇num(t)/L̇an(t) is constant within ±2% over the holding (creep) phase.

L̇num(t)/L̇an(t) is displayed in Figure 3-4 versus M0/H, where H = Pmax/Ac is the hardness
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Figure 3-4: Ratio of the contact creep compliance rate L̇num(t) obtained from the numerical
simulations and Eq. (3.61) to the contact creep compliance rate L̇an(t) obtained from the
analytical solution (3.68) versus M0/H for Berkovich and Cube Corner indentation. When
plasticity is prevented during the holding phase (red circles and green squares), plasticity is
still allowed during the holding phase.

calculated at the end of the loading phase.

On average, Equation (3.61) overestimates the contact creep compliance rate. This overesti-

mation depends on the half-cone angle and is more pronounced for the Cube Corner probe. The

overestimation increases with an increasing M0/H ratio, i.e., with a decreasing σy/E0 ratio.

At most, an overestimation of about 36% is obtained for the simulation with M0/H ≃ 51. On

the other hand, for ‘low’ M0/H ratios (M0/H ≤ 10) Equation (3.61) gives an almost perfect

evaluation of the contact creep compliance rate. To find the reason for the discrepancy of

Equation (3.61) new simulations were run in which plasticity was prevented during the creep

phase: For any σy/E0 ratio, Equation (3.61) is then in perfect agreement with the analytical

solution (3.68), for both Berkovich and Cube Corner probes. This observation proves that plas-

tic phenomena do occur during the creep phase, and lead to overestimating the contact creep

compliance rate by Eq. (3.61). The occurrence of plastic phenomena during the creep phase

is somewhat surprising. Indeed, over the creep phase, the area of contact between the probe

and the indented surface increases and, as a result, the average stress below the indenter, i.e.,
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Figure 3-5: Deformed mesh and Von Mises stresses during the creep phase for the numerical
simulation with σy/E0 = 10−2. The plastic phenomena occurring during the creep phase take
place in the rectangle.

the hardness H, decreases. The plastic deformations occur in a very localized fashion, around

the edge of the area of contact (Fig. 3-5). For the linear-viscoelasto—plastic simulations, the

fineness of the mesh around the contact edge was modified, which had no effect on the ratio

displayed in Figure 3-4. This observation suggests that the occurrence of plastic phenomena

over the creep phase is not a numerical artifact.

The simulation with σy/E0 = 10−2 (i.e., the most plastic case simulated) was repeated with a

parabolic indenter. When preventing plasticity over the creep phase, we find L̇num(t)/L̇an(t) =

0.989 ± 0.5%, which confirms that the validity of Equation (3.61) is not restricted to a given

indenter geometry.

In short, for any indenter shape, Equation (3.61) provides a link between experimental data

and the contact creep compliance rate, even when instantaneous plasticity occurs during the

loading phase. However, Equation (3.61) does not correct for the occurrence of plasticity during

the creep phase.

Specific Case of Short Indentation Creep Tests

For short creep phases the change in contact radius over the creep phase can be neglected. To

the first order, the contact radius is thus constant over the creep phase, i.e., a(t) ≈ aU , where
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aU is the contact radius just before unloading. Under this approximation, Equation (3.61)

becomes:

L̇(t) =
2aU ḣ(t)

Pmax
(3.69)

where ḣ(t) and Pmax are readily available from experimentation, and aU can be estimated with

the Oliver and Pharr method (see Section 2.3.2).

3.4 Chapter Summary

Indentation analysis aims at linking indentation data to meaningful material properties. Based

on original linear viscoelastic solutions developed in this Chapter, we propose such meaningful

material properties for time-dependent materials in the form of the contact relaxation modulus

M (t) and the contact creep compliance L (t), which can be accessed by an indentation relaxation

test and an indentation creep test, respectively. Both, M(t) and L(t), are material properties

which depend neither on the shape of the indenter probe nor on the load profile (Pmax for an

indentation creep test, hmax for an indentation relaxation test). Simple formulas (Eqs. (3.30)

and (3.69)) were derived which enable the measurement of M(t) and L(t) even when plasticity

occurs during loading. Such a derivation was mandatory since plastic phenomena occur below

a sharp Berkovich tip even at small loads.

The time-dependent properties of the indented material are measured during the holding

phase of the creep or relaxation test. Consequently, for the measurement to be reliable, the

holding phase should be "long enough". In contrast, we concluded in Section 2.4.3 that the

holding phase should be as short as possible for the indentation hardness to be representative

of the strength properties of the indented material. Those two requirements are clearly antago-

nistic. Therefore, depending on whether emphasis is placed on the measurement of the strength

or of the creep properties, different loading profiles may be required.

This Part was devoted to the development of the theoretical basis for the indentation analysis

of homogeneous cohesive—frictional linear viscoelastic solids. On this basis, it is possible to

extend the tools of indentation analysis to heterogeneous and multiphase materials. This is

shown in the next Part of this report.
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Part III

Indentation Analysis of

Heterogeneous Solids
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Chapter 4

Assessment of Microstructure by

Indentation

This third Part of the thesis deals with indentation analysis of heterogeneous solids having

heterogeneities that result either from microstructure or from multiphasic composition. The

analytical tools developed in this Part will play a critical role in achieving the objective of this

thesis, which is the implementation of the Materials Science paradigm between composition,

microstructure and performance for cement-based materials, which by nature are highly het-

erogeneous, multiscale and multiphase materials. This Part is composed of two Chapters: This

Chapter develops an indentation technique that allows linking continuum indentation quanti-

ties obtained by indentation of a porous material, namely indentation modulusM0, indentation

hardness H, and contact creep compliance L (t) or contact relaxation modulus M (t), to con-

stitutive properties and microstructural information of the solid phase that manifests itself at

a scale much smaller than that of indentation analysis. This will be achieved by using the tools

of linear and non-linear microporomechanics to homogenize elastic, strength and viscous prop-

erties [70]. The next Chapter will carry the analysis on to account for the multiphase structure

of materials in indentation analysis.
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4.1 Introduction

4.1.1 Problem Formulation

Consider an indentation test into a porous material composed of a solid phase and an (empty)

pore space (Fig. 4-1). The constitutive behavior of the solid phase is characterized by a set of

mechanical properties (elastic modulus ms, Poisson’s ratio νs, cohesion cs, friction coefficient

αs and contact creep compliance ls(t) or equivalently contact relaxation modulus ms(t)) which

is the same throughout the studied domain. The characteristic size of the porosity or solid

particle, say d, is assumed to be much smaller than the size of the indentation depth h. As

a result, the indentation modulus M0, the indentation hardness H, and the contact creep

compliance L (t) or equivalently the contact relaxation modulusM (t), which are extracted from

the indentation test using the tools developed in Chapters 2 and 3, are composite properties.

The goal of the indentation analysis of such a heterogeneous material is to link the measurable

composite indentation properties (M0,H,L (t)) to constituent properties of the solid phase

(ms, νs, cs, αs, ls(t)) and microstructural information, such as the volume fractions (porosity ϕ,

solid concentration or solid packing density η = 1 − ϕ), pore— and/or particle aspect ratio,

and matrix—pore morphology versus granular morphology, as displayed in Figure 4-1. — This

seems quite a daunting task given the large number of constituent and morphological properties

compared to the number of measurable composite indentation properties.

4.1.2 Scale Separability in Microporomechanics Indentation Analysis

Continuum micromechanics, or more precisely microporomechanics [70], is an extremely power-

ful tool to achieve just this, namely linking composite properties of a representative elementary

volume (rev) to constituent properties and microstructural morphology. This rev is an interme-

diate mechanical system whose characteristic size L is situated in-between the microstructural

scale characterized by the size of the heterogeneity d and the characteristic size of mechanical

solicitation, which in the case of an indentation test in a semi-infinite half-space is defined by

the indentation depth h or the contact radius a. In order to apply the tools of continuum
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Figure 4-1: Conical indentation in a porous material composed of a solid phase and pore space:
(a) Matrix—porosity morphology and (b) perfectly disordered, polycrystal morphology (adapted
from [33]).
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micromechanics, these scales must satisfy the scale separability condition:

d≪ L≪ (a, h) (4.1)

where:

• The condition d ≪ L ensures that the rev include enough heterogeneities so that the

composite response at the scale of the rev is representative of the material in a statistical

sense.

• The condition L ≪ (a, h) ensures that the tools of differential calculus used in Chapters 2

and 3 to derive the relationships linking indentation data to mechanical properties remain

valid.

Scale separability in indentation testing is quite easy to ensure, as one can monitor the

indentation depth h via the indentation load. Thus a combination of continuum microme-

chanics and indentation analysis based on the scale-separability conditions (4.1) is a powerful

approach to probing the microstructure of the indented heterogeneous material. This is shown

in forthcoming Sections for the composite indentation modulusM0 (Section 4.2), the composite

indentation hardness H (Section 4.3), and finally for the contact creep compliance L(t) (Section

4.4). Along the way we introduce the necessary tools of linear and non-linear micromechanics

for stiffness, strength and viscous properties.

4.2 Indentation Modulus—Packing Density Scaling Relations

4.2.1 Dimensional Analysis

Consider the indentation modulus M determined from an indentation test by means of the

BASh formula (2.13):

M
def
= S

√
π

2
√
Ac

(4.2)

where S = (dP/dh)h=hmax is the initial contact stiffness measured during unloading, and Ac the

projected area of contact between the indenter tip and the indented material determined, for

instance, with the Oliver and Pharr method. The indentation test conditions are such that the
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indentation modulus M is representative of the elasticity content of the indented material only,

as discussed in detail in Section 2.31. Consider then that M is the indentation modulus of a

two-phase (solid plus pore) composite that satisfies the scale separability conditions (4.1). The

indentation modulus M thus depends on the elastic properties of the solid phase (ms, νs) and

on the microstructure (packing density η and morphology); that is, in a dimensionless form:

M

ms
= ΠM (νs, η,X) (4.3)

where X is a yet-to-be specified dimensionless morphology parameter that characterizes the

microstructure of the solid-pore composite. Based on linear homogenization theory, the fo-

cus of this Section is to identify the dimensionless elasticity function ΠM for different pore

morphologies characterized by parameter X.

4.2.2 Brief Reminder of Elements of Linear Homogenization Theory

This Section provides a brief introduction to the tools of linear micromechanics2.

Briefly, we recall that continuum micromechanics based on the scale separability condi-

tions (4.1) involves two scales: The microscale, where the composite is heterogeneous, and the

macroscale, where the composite behaves mechanically in a homogeneous manner. Microscopic

and macroscopic quantities are defined in Table 4.1. The macroscopic quantities A (X) are

defined as the local average of the microscopic ones a (x). If Ω (X) is the rev centered at point

X, then for any quantities A (X) and a (x) we have:

A (X) = 〈a (x)〉Ω(X) =
1

|Ω|

∫

Ω(X)
a (x) dx (4.4)

The aim of linear homogenization theory is to find from the local distribution of microscopic

stiffness tensors C (x), which link the local stress σ (x) to the local strain ε (x) by σ (x) = C (x) :

ε (x), the homogenized stiffness tensor Chom, which links the macroscopic stress Σ (X) to the

1For this reason, we now drop the subscript M0, assuming in all what follows that M is representative of the
true elastic properties of the indented material.

2 Inspired from the presentation of B. Gathier [80].

112



Microscopic quantities Macroscopic quantities

Position x X
Strain ε (x) E (X)
Stress σ (x) Σ (X)
Energy ω (x) W (X)

Table 4.1: Microscopic and macroscopic quantities.

macroscopic strain E (X):

Σ (X) = Chom : E (X) (4.5)

It is common in homogenization theory to work with regular strain or stress boundary

conditions [70]:

• For fixed E, the displacement is prescribed at the boundary ∂Ω of the rev :

ξ = E · x on ∂Ω (4.6)

• For fixed Σ, the stress vector is prescribed at the boundary ∂Ω of the rev :

σ · n = Σ · n on ∂Ω (4.7)

For regular boundary conditions, and by neglecting the effect of an externally applied load

density so that divσ = 0, the Hill lemma [91] applies:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (4.8)

which stipulates that the macroscopic energy W (X) = Σ (X) : E (X) is indeed the volume

average of the microscopic strain energy ω (x).

Localization Tensor

From now on we restrict ourselves to regular displacement boundary conditions of the form

(4.6). In this case, due to the linearity of all microscopic material behaviors, the microscopic
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strain ε (x) is proportional to the applied macroscopic strain E (X):

ε (x) = A (x) : E (4.9)

where A (x) is called the strain concentration or strain localization tensor. Then the stress field

reads:

σ (x) = C (x) : A (x) : E (4.10)

So that:

Σ = 〈σ (x)〉Ω = 〈C (x) : A (x)〉Ω : E (4.11)

A comparison of Eqs. (4.11) and (4.5) yields the expression for the homogenized stiffness tensor:

Chom = 〈C (x) : A (x)〉Ω (4.12)

Determining the homogenized stiffness tensor is hence reduced to the determination of the strain

localization tensor A (x). Estimates of the strain localization tensor are obtained by considering

the problem known today as the Eshelby inclusion problem, presented next.

Eshelby Inclusion Problem

In 1957, Eshelby [72] considered the case of an isolated ellipsoidal inclusion (I) with constant

elasticity tensor C1 embedded in an infinite medium with a different elasticity tensor C0 and

subjected to a uniform strain E∞ at infinity (Figure 4-2).

The domain occupied by the inclusion is defined by:

I =
{
x ∈ R3 |x ·

(
tA ·A

)−1 · x ≤ 1
}

(4.13)

where A is a second order tensor. If e1, e2, e3 are the directions of the main axis and a1, a2, a3

are the half lengths of the axis, then:

A = a1 e1 ⊗ e1 + a2 e2 ⊗ e2 + a3 e3 ⊗ e3 (4.14)
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Figure 4-2: Eshelby problem: Ellipsoidal inclusion (I) embedded in an infinite elastic medium
(from [80]).

and the equation of the ellipsoid is:

(
x1
a1

)2
+

(
x2
a2

)2
+

(
x3
a3

)2
≤ 1 (4.15)

Eshelby showed that the strain field inside the inclusion is constant and that the value of

the strain inside the inclusion is:

∀x ∈ I, ε (x) = (I + P0 : (C1 −C0))−1 : E∞ (4.16)

where:

P0 =
detA

4π

∫

||v||=1

v
s
⊗ (v · C0 · v)−1

s
⊗ v

(
v · (tA ·A)−1 · v

) 3
2

dS (4.17)

is the Hill tensor. The Hill tensor depends only on the shape of the inclusion and not on its

size.

If the reference medium is isotropic,

C0 = 3K0 J+ 2G0K (4.18)
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and if the inclusion is a sphere (i.e. A = 1), then

P0 =
1

3K0 + 4G0
J+

3

5G0

K0 + 2G0
3G0 + 4G0

K (4.19)

where J and K are the fourth-order tensors defined by:

J =I⊗ I; K = I− J (4.20)

where I is the second order unit tensor.

From Eq. (4.17), expressions for the Hill tensor can also be derived for more complicated

material behaviors (e.g., for an anisotropic reference medium [110]) and other shapes of inclu-

sions (e.g., ellipsoidal inclusions in an isotropic reference medium [72] [9]).

The Eshelby inclusion problem can be used to obtain estimates of the homogenized stiffness

tensor Chom, as described next.

Estimates of Homogenized Stiffness Tensor

Here the composite material is assumed to be made of N phases, and the inclusions are assumed

to be spherical. The i-th phase (i ∈ {1, ..,N}) is characterized by the stiffness tensor Ci and

occupies the volume Ωi and a volume fraction φi of the composite. Using Eshelby’s result

(4.16), the mean strain tensor in each inclusion of phase i is estimated by:

〈ε (x)〉Ωi = (I + P0 : (Ci −C0))−1 : E∞ (4.21)

In the above expression, the strain E∞ ‘felt’ by the inclusion and the stiffness tensor C0 of

the embedding medium must be determined. E∞ is determined by enforcing the regular strain

boundary condition:

E = 〈ε (x)〉Ω (4.22)

Making use of Eq. (4.21) yields:

E =
N∑

i=1

φi (I + P0 : (Ci −C0))−1 : E∞ (4.23)
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It follows:

E∞ =

[
N∑

i=1

φi (I + P0 : (Ci −C0))−1
]−1

: E (4.24)

Therefore, from Eq. (4.16), the mean strain in each inclusion of phase i is:

〈ε (x)〉Ωi = (I + P0 : (Ci −C0))−1 :

[
N∑

i=1

φi (I + P0 : (Ci −C0))−1
]−1

: E (4.25)

A comparison of Eqs. (4.25) and (4.9) yields the expression of the mean strain localization

tensor:

〈A (x)〉Ωi = (I + P0 : (Ci −C0))−1 :

[
N∑

i=1

φi (I + P0 : (Ci −C0))−1
]−1

(4.26)

and, finally, the expression of the homogenized stiffness tensor Chom:

Chom =
N∑

i=1

φiCi : 〈A (x)〉Ωi (4.27)

=

[
N∑

i=1

φiCi : (I + P0 : (Ci −C0))−1
]

:

[
N∑

i=1

φi (I + P0 : (Ci −C0))−1
]−1

(4.28)

In Eq. (4.28) the stiffness tensor C0 (and consequently P0) of the embedding medium

remains still to be determined and depends on the morphology of the composite considered:

• If the composite has a clear matrix—inclusion morphology (see Figure 4-1a), it is rea-

sonable to consider that the embedding medium is the matrix. Such an estimate of the

homogenized stiffness tensor Chom is called the Mori-Tanaka estimate CMT [130]. Assum-

ing that the phase 1 is the matrix, letting C0 → C1 in Eq. (4.28) yields the Mori-Tanaka

estimate:

CMT =

[
N∑

i=1

φiCi : (I + P1 : (Ci −C1))−1
]

:

[
N∑

i=1

φi (I + P1 : (Ci −C1))−1
]−1

(4.29)

• If no phase in the composite plays the role of a matrix (see Figure 4-1b), one can consider

that the embedding medium is the homogenized medium itself. Such an estimate of the

homogenized stiffness tensor Chom is called the self-consistent (or polycrystal) estimate
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CSC , which originated independently from Hershey [89] and Kröner [107]. Granular ma-

terials are well captured by a self-consistent model. Letting C0 → Chom = CSC , the

self-consistent estimate is found by solving:

CSC =

[
N∑

i=1

φiCi :
(
I + PSC :

(
Ci −CSC

))−1
]

:

[
N∑

i=1

φi
(
I + PSC :

(
Ci −CSC

))−1
]−1

(4.30)

We now have all the theoretical tools necessary to assess the link between indentation

modulus M and microstructure for the solid-pore composite presented in Figure 4-1.

4.2.3 Matrix—Pore Inclusion Morphology

We start with the matrix-pore inclusion morphology (Figure 4-1a), which is well captured by

the Mori-Tanaka scheme [130]. The isotropic solid phase of the solid-pore composite occupies

the volume fraction (packing density) φS = η of the composite and is characterized by the

elastic stiffness tensor Cs = 3ks J + 2gsK. In contrast, the pore occupies the volume fraction

φV = ϕ = 1− η of the composite and obviously has no stiffness. Solving Eq. (4.29) for N = 2

with the solid as matrix (K1 = ks, G1 = gs and φ1 = η) and the pores as inclusion (K2 = 0,

G2 = 0 and φ2 = ϕ) yields the homogenized bulk modulus KMT and shear modulus GMT :

KMT = gsKMT ;KMT = 4
η

3 (1− η) + 4/γs
(4.31)

GMT = gsMMT ;MMT =
η(8/γs + 9)

6 (1− η) (2/γs + 1) + 8/γs + 9
(4.32)

where γs = ks/gs = 2 (1 + νs) /3 (1− 2νs) > 0. Recalling that the indentation modulus relates

to the bulk and shear modulus by (2.20):

MMT = 4GMT 3KMT +GMT

3KMT + 4GMT
(4.33)

a dimensionless expression of the form (4.3) is obtained that links the indentation modulus to

constituent properties (ms, νs) and microstructure (solid concentration η) [184]:

ΠMT
M =

MMT

ms
=

1

2

(7− 5νs)(−13ϕ+ 2ϕνs + 15ϕν2s − 14 + 10νs)(1− ϕ)

(7− 5νs + 5ϕ+ 5ϕνs)(−8ϕ+ 10ϕνs − 7 + 5νs)
(4.34)
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where ms = 4gs(3ks + gs)/(3ks + 4gs) is the plane-stress modulus of the solid phase. Figure

4-3a displays the normalized indentation modulus M/ms versus solid packing density η. The

normalized indentation modulus M/ms shows very little sensitivity to the Poisson’s ratio νs of

the solid phase.

4.2.4 Granular Morphology with Spherical Particles

Consider next a granular morphology of the solid phase with spherical pores and spherical solid

particles (Figure 4-1b). Solving Eq. (4.30) for N = 2 with the solid as the first phase (K1 = ks,

G1 = gs and φ1 = η) and the pores as the second (K2 = 0, G2 = 0 and φ2 = ϕ) yields the

homogenized bulk modulus KSC and shear modulus GSC :

KSC =
1

2

ks
9ϕks + (12− 20ϕ) gs

(3ϕ (3− ϕ) ks + (24 + 20ϕ 2 − 56ϕ) gs

... −ϕ
√

81 k2s − 168ϕksgs − 54 k2s ϕ+ 144 gs ks + 400ϕ 2 gs 2

... −120ks ϕ 2 gs − 320ϕgs 2 + 9 ks 2 ϕ2 + 64 gs 2 )

(4.35)

GSC =
1

16
((8− 20ϕ) gs + (3ϕ− 9)ks

... +
√

81 k2s − 168ϕks gs − 54ks 2 ϕ+ 144 gs ks + 400ϕ 2 gs 2

... −120 ksϕ 2 gs − 320ϕgs 2 + 9 ks 2 ϕ 2 + 64 gs 2 )

(4.36)

and eventually the homogenized indentation modulus M in the dimensionless form (4.3) [57]:

ΠSC
M =

MSC

ms
= MSC

(
9(1− ϕ)γs + 4MSC + 3γs

)
(3γs + 4)

4 (4MSC + 3γs) (3γs + 1)
(4.37)

where γs = 2 (1 + νs) /3 (1− 2νs) > 0, and MSC is the composite shear—to—solid shear moduli

ratio:

MSC =
1

2
− 5

4
ϕ− 3

16
γs (3− ϕ) (4.38)

+
1

16

√√√√√ 144 (1− γs)− 480(1− ϕ) + 400(1− ϕ)2 + ...

...+ 408γs(1− ϕ)− 120γs(1− ϕ)2 + 9γ2s (3− ϕ)2

Figure 4-3b displays the normalized indentation modulus M/ms versus the packing density
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Figure 4-3: Normalized homogenized indentation modulus M/ms versus packing density η (a)
for a Mori-Tanaka scheme and (b) for a self-consistent scheme.
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η = 1 − ϕ. Similarly to the matrix-pore morphology, the normalized indentation modulus

M/ms shows very little sensitivity to the Poisson’s ratio νs of the solid phase; however a

comparison between Figures 4-3a and 4-3b shows that the choice of morphology strongly affects

the relationship between indentation modulus and packing density. While the matrix—pore

inclusion morphology leads to a continuous M/ms scaling for the entire packing density range

η ∈ [0, 1], the spherical granular morphology is characterized by a percolation threshold of

η0 = 1/2, below which the composite material has no stiffness. In terms of the dimensionless

relation (4.3), the relevant morphology parameter X appears to be the percolation threshold:

M

ms
= ΠM (νs, η,X = η0) (4.39)

with η0 = 0 for a matrix—pore inclusion morphology, and η0 = 1/2 for a polycrystal morphology

with spherical particles. As we will see here below, the identification of the percolation threshold

as the key morphological parameter for randomly oriented particles holds even for different

particle shapes.

4.2.5 Granular Morphology with Aspherical Particles

In this Section, the morphology of the composite is assumed to be granular, the solid particles

being aspherical and randomly oriented in the composite. The presentation is inspired by the

work of Sanahuja et al. [160]. To capture the asphericity of the solid particles spheroids are

considered, defined by their aspect ratio rs (see Figure 4-4). The aspect ratio rs of a spheroid

is defined as the ratio of the length of the symmetry axis over the diameter in the symmetry

plane. Particles with rs < 1 are oblate spheroids, particles with rs > 1 are prolate spheroids.

In contrast, the pore inclusions are still considered spherical.

Since solid inclusions and pore inclusions now have different shapes, the corresponding

expressions of the Hill tensor (4.17) are also different. Since the pore inclusions are assumed

spherical, Eq. (4.26) is still valid to calculate the mean strain localization tensor in the pore

inclusions, but the mean strain localization tensor in the aspherical solid inclusions must be

calculated again so that Eq. (4.27) can be solved.

The Hill-tensor for spheroids can be found in the literature (e.g., [9]). It now depends on
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Figure 4-4: Prolate spheroid with rs = 3 (left) and oblate spheroid with rs = 1/3 (right).

the orientation P0(θ, φ) and so does the solution of the Eshelby inclusion problem [160]:

ε(θ, φ) = (I + P0(θ, φ) : (Ci −C0))−1 : E∞ (4.40)

The strain localization tensor AS in the solid and the mean strain (4.21) must be carefully

calculated. Considering a random orientation of the solid spheroids, the mean strain in the

solid inclusions is now calculated over the solid volume ΩS as [160]:

〈ε (x)〉ΩS = As (x) : E∞ (4.41)

=




2π∫

φ=0

π∫

θ=0

(I + P0(θ, φ) : (Ci −C0))−1
sin θ

4π
dθdφ


 : E∞ (4.42)

Once this calculation is performed, the strain localization tensor is known in both the solid and

pore inclusions. Then Eq. (4.27) can be used to calculate the homogenized stiffness tensor.

However, the calculation of Eq. (4.42) requires extensive use of Maple3, and its result is too

lengthy to be reasonably printed. Nevertheless, it is thus possible to obtain the link between

homogenized indentation modulus and microstructure for various packing densities η and aspect

ratios rs of the solid particles.

The results of this calculation, which are displayed in Figure 4-5, show that the percolation

3The numerical implementation was performed by Alberto J. Ortega during his PhD at MIT.
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Figure 4-5: Effect of the solid particle aspect ratio rs of the solid particles (a) on the percolation
threshold and (b) on the indentation modulus—packing density (M/ms − η) scaling relations.
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threshold of a randomly oriented polycrystal material depends on the particle shape, which

is in very good agreement with granular physics results. Indeed, the packing of particles is a

focus of attention in the granular physics community, and several researchers have attempted

to understand the packing of ellipsoids. Onoda and Liniger [139] determined that the random-

loose packing fraction of uniform spheres at the limit of zero gravitational force is 0.555 ±
0.005, which corresponds to a sphere packing at its rigidity-percolation threshold. Buchalter

and Bradley [29] performed Monte Carlo simulations of the pouring of oblate and prolate

ellipsoids, and showed that increased asphericity (prolate and oblate) yields lower percolation

thresholds. Similar results have been obtained by Coelho et al. [53] and Sherwood [164] using

a sequential deposition algorithm of rigid particles of different shapes. The results obtained

with the polycrystal model, therefore, are quantitatively in very good agreement with granular

physics results, as shown in Figure 4-5(a). This confirms, if need still be, that the self-consistent

model of linear micromechanics, which originated independently from Hershey [89] and Kröner

[107], recognizes the percolation threshold associated with granular materials. Kröner’s original

work considered a perfectly random distribution of contact surfaces between particles. This

averaged random contact may be represented, mechanically, by a sphere. For the spherical

case, the percolation threshold of the polycrystal model is η0 = 1/2 (Fig. 4-3b). While a sphere

itself is a ‘perfectly disordered’ particle shape in the context of the self-consistent model [199],

non-spherical shapes introduce some order to the system, leading to a percolation threshold

below η0 < 0.5.

This dependence of the percolation threshold on the particle shape affects the indentation

modulus — packing density scaling particularly around the percolation threshold (Fig. 4-5b),

that is for loosely packed granular materials close to the minimum packing density at which

the material is able to sustain a load. In contrast, for higher packing densities, the effect

of the particle size on the modulus—packing density scaling vanishes, and above a packing

density of η ≃ 0.6 the shape of the solid particles has virtually no effect on the scaling of the

indentation modulus with the packing density η. Otherwise said, for highly packed systems

(η > 0.6), micromechanics alone cannot resolve order in the particle shape when understanding

and predicting the mechanical response of the composite response, as the influence of the

particle shape is negligible in linking mechanical properties to microstructure. In this case, it
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seems prudent to consider a spherical particle morphology for micromechanics analysis of the

indentation modulus of a highly packed system.

Finally, the unique link between particle shape and percolation threshold for randomly

oriented granular materials (i.e., see Fig. 4-5b) proves that the key morphological parameter

that affects the indentation modulus — packing density scaling is the percolation threshold,

which varies as a function of the particle shape, η0 = η0 (rs), between η0 = 0 for a matrix—

inclusion morphology and η0 = 1/2 for spherical solid particles.

4.3 Hardness—Packing Density Scaling Relations

4.3.1 Dimensional Analysis

Consider the indentation hardness of an indentation test:

H =
P

Ac
(4.43)

The hardness is assumed to be representative of only the strength properties of the indented

material, as discussed in detail in Section 2.4. Consider then that H is the indentation hardness

of a two-phase (solid plus pore) composite that satisfies the scale separability condition (4.1).

The composite indentation hardness H thus depends on the strength properties of the solid

phase (cohesion cs, friction coefficient αs; see Section 2.4.2) and on the microstructure (packing

density η and percolation threshold X = η0); that is, in a dimensionless form:

H

hs
= ΠH(αs, η,X = η0, θ) (4.44)

where hs = limη→1H is the asymptotic hardness of a cohesive—frictional solid phase that obeys

the Drucker-Prager criterion (Section 2.4.2). This asymptotic value does not depend on the

morphology of the solid phase, but relates only to the solid’s cohesion cs and friction coefficient

αs through relation (2.89), which we recall:

hs
cs

= A(1 +Bαs + (Cαs)
3 + (Dαs)

10) (4.45)
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with: 



A = 4.76438

B = 2.5934

C = 2.1860

D = 1.6777

This Section reports recent results of indentation analysis of the hardness—packing density

scaling relation ΠH for Berkovich indentation (θ = 70.32◦). Based on the scale separability

condition (4.1), the analysis is performed in two steps: (1) Homogenization of the strength

behavior of the composite at the scale of the rev ; (2) determination of the hardness—packing

density scaling from indentation yield design analogous to the approach presented in Section

2.4.2. These steps are detailed below. Along the way, a brief introduction to the elements of

non-linear strength homogenization is presented, which is inspired by the work of Gathier [80].

4.3.2 Elements of Strength Homogenization Theory

The goal of strength homogenization is to derive the macroscopic strength domain of a het-

erogenous material from knowledge of the microscopic strength domains of the different material

phases that make up a composite material. Yield design theory provides a useful framework

for strength homogenization.

Yield Design Formulation

Yield design aims to find the macroscopic load, Σ, corresponding to the plastic collapse of the

composite material. The strength domain of phase i is denoted by Gi. The behavior of each

phase at plastic collapse is assumed to follow the principle of maximum dissipation, linking the

stress, σ, on the boundary of Gi to the strain rate, d, by:

σ =
∂πi (d)

∂d
(4.46)

where πi (d) is the maximum dissipation capacity of phase i:

πi (d) = sup
σ∗∈Gi

σ
∗ : d (4.47)
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Then, subjecting a representative elementary volume of the composite material (rev) to a

homogeneous strain rate boundary condition and recalling the static admissibility of the stress

field solution to the problem formulated in strain rates, we can summarize the equations of the

problem as follows:

div(σ) = 0 in V (4.48a)

σ =
∂πi
∂d

(d) in Vi (4.48b)

d =
1

2

(
grad v + tgrad v

)
in V (4.48c)

v = D · x on ∂V (4.48d)

Then, from convex analysis [61] [158], we can show that the maximum dissipation capacity of

the system:

Πhom (D) = sup
Σ∈Ghom

Σ : D

with Σ = 〈σ〉V = σ

(4.49)

is the solution to the variational problem:

Πhom (D) = inf
v∗∈K(D)

π (d (v∗) , x) (4.50)

where K (D) is the set of kinematically admissible strain rates:

K (D) = {v∗ (x) |v∗ (x) = D · x on ∂V } (4.51)

Analogously to the microscopic quantities, we obtain the following relation between the

macroscopic stress at plastic collapse, Σ, and the macroscopic strain rate, D:

Σ =
∂Πhom

∂D
(4.52)

LCC Homogenization Method

Consequently, the aim of our strength homogenization approach is to estimate the solution to

system (4.48). It is important to note that the plastic behavior of each phase (4.48b) introduces
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a strong non-linearity to the problem and prevents the use of linear micromechanics techniques.

Methods based on Effective Strain Rates have been recently proposed [10], [159]. In order to be

less restrictive, however, we employ the more general concept of Linear Comparison Composite

(LCC), introduced by Castañeda [35] [36] [37].

The principle of the LCC approach is to approximate the non-linear behavior by a linear

one with suitably chosen stiffness parameters. We consider a fictitious comparison composite

in which the behavior of each phase is given by:

σ = Ci : d+ τ i (4.53)

The corresponding strain rate energy of the composite material is:

ω0 (x,d) =
∑
i χ (x) ωi (d)

with ωi (d) =
1

2
d : Ci : d+ τ i : d

(4.54)

Then, recalling the classical inequality

inf
x

(f (x) + g (x)) ≥ inf
x

(f (x)) + inf
x

(g (x)) (4.55)

and applying it to ω0 = π + ω0 − π, we obtain

inf
v∗∈K(D)

ω0 (x,d (v∗)) ≥ inf
v∗∈K(D)

π (x,d (v∗)) + inf
v∗∈K(D)

ω0 (x,d (v∗))− π (x,d (v∗)) (4.56)

where we recognize Πhom (D):

Πhom (D) ≤ inf
v∗∈K(D)

ω0 (x,d (v∗))− inf
v∗∈K(D)

ω0 (x,d (v∗))− π (x,d (v∗)) (4.57)

The first term of the right hand side is the macroscopic strain rate energy W0 (D) of the LCC:

W0 (D) = W0 (D) = inf
v∗∈K(D)

ω0 (x,d (v∗)) (4.58)
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The second term can be overestimated by:

− inf
v∗∈K(D)

ω0 (x,d (v∗))− π (x,d (v∗)) ≥
∑

i

φi Vi (4.59)

where Vi is constant in each phase of volume fraction φi:

Vi = sup
d

πi (d)− ωi (d) (4.60)

Finally, we obtain the following upper bound for Πhom:

Πhom (D) ≤ W0 (D) +
∑

i

φi Vi (4.61)

The goal, therefore, is to find the stiffness parameters of the comparison composite that

lead to the lowest possible upper bound, thus yielding the best possible estimate of Πhom.

Preserving a true upper bound status, however, may sometimes prove difficult, and we can

replace the infima or maxima by stationary points [37]. The resulting estimates are then

stationary variational estimates and not bounds in general. This new estimate, Π̃hom, reads:

Π̃hom (D) = stat
Ci,τ i

[
W0 (D) +

∑

i

φi Vi
]

(4.62)

with

Vi = stat
d

{πi (d)− ωi (d)} (4.63)

There are usually different points of stationarity, which is why each particular case must be

analyzed separately [37]. The method is summarized in 3 main steps:

1. Compute the expression of the macroscopic strain rate energy, W0 (D), in the Linear

Comparison Composite. This expression is obtained from linear micromechanics.

2. Compute, for each phase, the expression of Vi, which measures the non-linearity of the

original material and contains information on the local strength domain.

3. Formulate the stationarity equations (Eqs. 4.62 and 4.63) and solve the system in terms

of Ci and τ i. The corresponding estimate of the macroscopic plastic dissipation capacity,
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Π̃hom (D), allows generation of the macroscopic strength criterion (Eq. 4.52).

This methodology is applied next for the two-phase solid-pore composite of interest.

4.3.3 Application to the Solid—Pore Composite

Here a two-phase solid-pore composite is considered. The solid phase strength properties are

governed by a Drucker-Prager model of cohesion cs and friction coefficient αs. For reasons of

convexity, the strength domain is described by the regularized hyperbolic criterion (2.71):

f (σ) = 1−
(
σm − S0
A

)2
+

(
σd√
2B

)2
≤ 0 (4.64)

where σm = 1
3I1 = 1

3tr(σ) and σd =
√

2J2 =
√
S : S with S = σ−σm1 . The dual definition of

the strength domain in terms of the π function is given by (2.79):

π (d) = π (dv, dd) = S0dv −
√

(Adv)
2 −
(√

2Bdd
)2

(4.65)

where dv = trd = I ′1 and dd =
√
δ : δ =

√
2J ′2. The Drucker-Prager model is obtained from

(2.72): 



B = αsA

S0 =
cs
αs

A→ 0

(4.66)

Step 1: Strain Rate Energy Function W0 (D) of the Linear Comparison Composite

The first step in solving the strength homogenization problem is to determine the strain rate

energy function W0 (D) of the linear comparison composite (LCC). Consider the porous com-

posite composed of a solid phase (volume fraction η) and porosity ϕ = 1−η. It is convenient to

apply a two-phase description of the microscopic stiffness C (x) and prestress τ (x), with spatial

distribution within the rev given by:

C (x) =




Cs = 3ksJ+ 2gsK in Vs

0 in Vp
; τ (x) =




τ 1 in Vs

0 in Vp
(4.67)
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where Vs stands for the domain occupied by the solid phase and Vp stands for the domain

occupied by the voids.

Using Levin’s theory [70], the corresponding macroscopic stress equation of state reads [80]:

Σ = Chom : D+T (4.68)

where Chom and T are respectively the macroscopic stiffness tensor and the macroscopic pre-

stress given by:

Chom = C (x) : A (x) = Cs : ηA
s

= 3KhomJ+ 2GhomK (4.69a)

TI = τ (x) : A (x) = τ1 : ηA
s

= τ1 : C−1s : Chom = τ
Khom

ks
1 (4.69b)

with:

Khom = η Ks J : A
s

= G K
(
ks
gs
, η, η0

)
(4.70a)

Ghom = η G K : A
s

= GM
(
ks
gs
, η, η0

)
(4.70b)

where A (x) is the fourth-order strain (rate) localization tensor and A
s

the volume average

of A (x) over the solid phase. The second part of the equalities are readily obtained from

dimensional analysis, where ks/gs is the bulk—to—shear modulus ratio of the solid phase, while

the dimensionless functions K and M are morphological factors which depend on the solid’s

bulk—to—shear modulus ratio, the pore morphology, and the solid concentration η, as detailed

later on.

The strain rate energy function W0 (D) is obtained by an application of linear homogeniza-

tion theory. The resulting strain rate energy function for the solid—void composite is [80]:

W0 (Dv,Dd) =
1

2
KhomD2v +GhomD2d +

Khom

ks
τDv +

1

2ks

(
Khom

ks
− η
)
τ2 (4.71)

=
1

2
gs KD2v + gsMD2d +

gs
ks
KτDv +

1

2ks

(
gs
ks
K− η

)
τ2

where Dv = tr (D) and Dd =
√
∆ : ∆ with ∆ = D− 1

3Dv1.
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Step 2: V Function

The second step consists of determining the V function (Eq. 4.63) for the solid phase (V for

the pore space is zero). This requires the expression of the π-function (Eq. 2.79) along with

an expression for the strain rate energy of the solid:

ωs (d) =
1

2
ksd

2
v + gsd

2
d + τdv (4.72)

Then, applying the stationarity condition to the V function implies that:

ksdv + τ = S0 −
A2dv√

(Adv)
2 −
(√

2Bdd
)2 (4.73a)

2gsdd =
2B2dd√

(Adv)
2 −
(√

2Bdd
)2 (4.73b)

The microscopic stiffness components ks and gs of the linear comparison composite must be

positive. Introduction of the prestress provides a means to ensure that ks and gs are positive

by requiring that:

τ = S0 −
2A2dv√

(Adv)
2 −
(√

2Bdd
)2 (4.74a)

ks =
A2√

(Adv)
2 −
(√

2Bdd
)2 > 0 (4.74b)

gs =
B2√

(Adv)
2 −
(√

2Bdd
)2 > 0 (4.74c)

Then we have just two independent parameters for the behavior of the comparison composite,

τ and gs; since:
ks
gs

=
A2

B2
= const. (4.75)

and for the Drucker-Prager case (Eqs. (4.66)):

ks
gs

=
A2

B2
=

1

α2s
(4.76)
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These expressions yield the sought-after expression of V for the hyperbolic criterion as a

function of the independent parameters τ and gs:

Vs =

(
B (S0 − τ)

2A

)2 1

gs
− 1

2

B2

gs
(4.77)

In the Drucker-Prager case (Eqs. 4.66), Vs becomes:

Vs = (cs − ατ)2
1

4gs
(4.78)

Step 3: Stationarity of Π̃hom

The third step consists in exploring the stationarity of Π̃hom, i.e., Eq. (4.62). Note, however,

that Eq. (4.75) reduces the degrees of freedom from three (ks, gs, τ ) to two (gs, τ ), such that:

Π̃hom = stat
G,τ

[W0 (Dv, Dd) + ηVs] (4.79)

The condition is explicitly expressed as:

∂Π̃hom

∂gs
=

∂K

∂gs

∂W0

∂gs
+
∂W0

∂gs
+ η

∂Vs
∂gs

= 0 (4.80a)

∂Π̃hom

∂τ
=

∂W0

∂τ
+ η

∂Vs
∂τ

= 0 (4.80b)

Using Eq. (4.71) and Eq. (4.77) in Eq. (4.80b) while making use of Eq. (4.75) yields:

τ =
A2 (2KgsDv − ηS0)
ηA2 − 2KB2 (4.81)

Then, substituting Eq. (4.81) into Eq. (4.80a) gives:

g2s =
B2

A2
η
(
ηA2

(
S20 −A2

)
+KB2

(
2A2 − S20

))
(
ηKA2D2v + (2ηMA2 − 4KMB2)D2d

) (4.82)
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Finally, using the values of (gs, τ) corresponding to the stationarity of Π̃hom in Eq. (4.79)

provides the following estimate for Π̃hom:

Π̃hom = Σhom0 Dv − sign
(
2KB2 − ηA2

)√
(Ahom)

2
D2v + 2 (Bhom)

2
D2d (4.83)

where:

(
Ahom

)2
=

η2B2K
(
ηA2

(
S20 −A2

)
+B2

(
2A2 − S20

)
K
)

(ηA2 − 2KB2)2
(4.84a)

(
Bhom

)2
=

ηB2M
(
ηA2

(
S20 −A2

)
+B2

(
2A2 − S20

)
K
)

A2 (ηA2 − 2B2K)
(4.84b)

Σhom0 =
ηB2K

2KB2 − ηA2S0 (4.84c)

A comparison of Eq. (4.83) with Eq. (2.79) readily reveals that Eq. (4.83) is the Π function

of a hyperbolic criterion provided that 2KB2 − ηA2 > 0. In return, for 2KB2 − ηA2 < 0, the

function Π̃hom corresponds to an elliptical strength criterion:

(
Σm −Σhom0

)2

(Ahom)2
+

(
Σd/

√
2
)2

(Bhom)2
= 1 (4.85)

More generally, depending on the sign of the term
(
Bhom

)2
, the strength criterion can be either

an ellipse (
(
Bhom

)2
> 0) or a hyperbola (

(
Bhom

)2
< 0), as displayed in Figure 4-6.

From its definition (4.84b), it is recognized that the sign of
(
Bhom

)2
depends on the sign of

ηA2 − 2KB2, that is:

sign

((
Bhom

)2)
= sign

(
ηA2 − 2KB2

)
=





−1 Hyperbolic Criterion

0 Limit Parabola

+1 Elliptical Criterion

(4.86)

In the Drucker-Prager case (Eqs. 4.66), the strength homogenization factors (Eq. 4.84)
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dΣ

02 >B

02 =B

02 <B

mΣ

dΣ−

dΣ

02 >B

02 =B

02 <B

mΣ

dΣ−

Figure 4-6: Illustration of strength criterion: Elliptical criterion,
(
Bhom

)2
> 0, limit parabola(

Bhom
)2

= 0, and hyperbola
(
Bhom

)2
< 0. In the Σm × Σd plane, the criterion is a half-

ellipse, half-parabola and half-hyperbola, and full drawing here to negative values, −Σd, is for
illustration only. (from [34]).

simplify:

(
Ahom,I

cs

)2
=

η2K
(
η − α2sK

)

(η − 2α2sK)2
(4.87a)

(
Bhom,I

cs

)2
=

ηM
(
η − α2sK

)

η − 2α2sK
(4.87b)

Σhom,I0

cs
=

ηαsK
2Kα2s − η

(4.87c)

and the class of criterion is now determined by the sign of X = 2α2sK − η: X > 0 for an

hyperbole, X < 0 for an ellipse:

η − 2α2s K
(
ks
gs

=
1

α2s
, η

)




< 0 Hyperbolic Criterion

= 0 Limit Parabola

> 0 Elliptical Criterion

(4.88)
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Pore Morphology Factors

We are left with specifying the pore morphology factors:

Khom

gs
= K

(
ks
gs
, η, η0

)
(4.89)

Ghom

gs
= M

(
ks
gs
, η, η0

)
(4.90)

Their determination is based on linear homogenization theory, in which the solid’s bulk —to—

shear modulus ratio is replaced by relation (4.76). The two ‘limit’ morphologies depicted in

Figure 4-1 are considered:

• For a matrix—pore morphology (Fig. 4-1a), characterized by a percolation threshold

η0 = 0, the results of linear homogenization for a Mori-Tanaka scheme, (4.31) and (4.32),

yield:

KMT = K
(
ks
gs

=
1

α2s
, η, η0 = 0

)
=

4η

3(1− η) + 4α2s
(4.91)

MMT = M
(
ks
gs

=
1

α2s
, η, η0 = 0

)
=

η (9 + 8α2s)

15− 6η + (20− 12η)α2s
(4.92)

• For a polycrystal morphology (Fig. 4-1b), characterized by a percolation threshold η0 =

1/2, the results of linear homogenization for a self-consistent scheme, (4.35) and (4.36),

yield:

KSC = K
(
ks
gs

=
1

α2s
, η, η0 = 0.5

)
=

4ηMsc

4α2sMsc + 3 (1− η) (4.93)

MSC = M
(
ks
gs

=
1

α2s
, η, η0 = 0.5

)
=

1

2
− 5

4
(1− η)− 3

16α2s
(2 + η) (4.94)

+
1

16α2s

√
144 (α4s − α2s)− 480α4sη + 400α4sη

2 + 408α2sη − 120α2sη
2 + 9 (2 + η)2

The description of the homogenized strength domain of the solid—pore composite is then

complete.
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4.3.4 Hardness—Packing Density Scaling Relations for Specific PoreMorpho—

logies

The strength criterion of the rev can now be used for the determination of hardness—packing

density scaling relations (4.44) in functions of the solid’s friction coefficient and the pore mor-

phology. To make this mapping of the normalized hardness, the numerical Limit Analysis Solver

presented in Section 2.4.2 is employed.4 In order to map the values of the hardness/cohesion

ratio for any parameter of the system, we vary αs ∈ [0,
√

3/4[ and η ∈ [0.5, 1]. This mapping

covers the entire range of both the elliptical strength domain, η ∈ [η0, ηcr[ , and the hyperbolic

strength domain, η ∈ ]ηcr, 1], according to:

η − ηcr (αs, η0)





> 0 Hyperbolic Criterion

= 0 Limit Parabola

< 0 Elliptical Criterion

(4.95)

where η − ηcr (αs, η0) is the critical packing density, which depends on the pore morphology:

• For the matrix—pore morphology (η0 = 0):

ηMT
cr = 1− 4

3
α2s ≤ 1 (4.96)

• For the self-consistent morphology (η0 = 1/2):

ηSCcr = 1− 1

2

√
81 + 432α2s + 1216α4s −

(
9 + 16α2s

)

3 + 20α2s
≤ 1 (4.97)

The Limit Analysis Solver would not converge, however, for high values of αs (i.e., αs >

1/
√

3 = 0.577 35). The reason for this computational limitation is unknown. Hence, all results

below are strictly valid for αs ∈ [0,
√

1/3[.

Figure 4-7 presents a sampling of results for both the matrix—pore morphology (Fig. 4-7a)

and the polycrystal morphology (Fig. 4-7b) in terms of relationships between packing density

and hardness—to—cohesion ratios for various friction coefficients, αs. Similar results were first

4The numerical implementation was performed by Prof. Lavinia A. Borges.
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obtained by Cariou et al. [34] by employing an upper bound yield design approach for an

elliptical strength criterion based on the work of Barthélémy and Dormieux [10].

It is possible to derive fitting functions that summarize the discrete simulation results in

closed form expressions to be used for data analysis. The format of the scaling relations is

chosen in the following form:

H

hs
= Π1 (η, η0) + αs (1− η) Π2 (αs, η, η0) (4.98)

where the first part, Π1 (η, η0), is the frictionless portion of the function, while the second part,

αs (1− η) Π2 (αs, η, η0), captures the effect of the solid friction on the normalized hardness-

packing density scaling relation. Depending on the pore morphology, the following fitted ex-

pressions for Π1 (η) and Π2 (α, η) were obtained [80]:

• For the matrix—pore morphology (η0 = 0):

ΠMT
1 (η) = η

(
1 + a (1− η) + b (1− η)2 + c (1− η) η3

)
(4.99)

ΠMT
2 (αs, η) = αsη

2
(
d+ e (1− η) + f (1− η)αs + gα3s

)

with

MT:





a = −1.2078

b = 0.4907

c = −1.7257

d = 8.7145

e = −40.6615

f = 74.0617

g = −64.094

• For the polycrystal morphology representing a perfectly disordered porous material (η0 =

1/2):

ΠSC
1 (η) =

√
2 (2η − 1)− (2η − 1)√

2− 1

(
1 + a (1− η) + b (1− η)2 + c (1− η)3

)
(4.100)

ΠSC
2 (αs, η) =

2η − 1

2

(
d+ e (1− η) + f (1− η)αs + gα3s

)
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Figure 4-7: Scaling of the indentation hardness —to— cohesion ratioH/cs of the porous composite
with the packing density η and the solid friction coefficient αs (a) using a Mori-Tanaka scheme
and (b) using a Self-Consistent scheme (from [80]).
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with

SC:





a = −5.3678

b = 12.1933

c = −10.3071

d = 6.7374

e = −39.5893

f = 34.3216

g = −21.2053

With relationships between packing density, cohesive-frictional strength parameters, and

indentation hardness in place and well approximated by smooth, closed-form fitting functions,

an inverse approach to analysis of nanoindentation results is possible.

4.4 Scaling of Creep Properties with Packing Density

This Section focuses on identifying the link between the creep properties of the composite

and the microstructure. Within the framework of linear viscoelasticity, the solving of the

viscoelastic problem is performed with the s-multiplied Laplace transform method presented in

Section 2.3.3.

4.4.1 Dimensional Analysis

Consider an indentation creep test on a linear viscoelastic material. The indentation test

provides access to the contact creep compliance L(t) from Eqs. (3.43) and (3.47) or in rate

form from Eq. (3.61):

L (t) =
φh1+1/d (t)

Pmax
=

∫ t

0

2a(t)ḣ(t)

Pmax
dt (4.101)

where φ given by (3.8) condenses the indenter specific geometry parameters, Pmax is the inden-

tation load in a Heaviside loading, and a(t) is the contact radius. For purpose of argument,

we assume that the test conditions are such that the contact creep compliance characterizes

the true viscoelastic properties of the indented material as discussed in detail in Chapter 3. In

particular, to simplify subsequent derivations we assume that the material exhibits no plastic

deformation.

Consider then, as throughout this Chapter, that L (t) is the contact creep compliance of

a viscoelastic solid-pore composite material which respects the scale separability conditions

(4.1). Since the pore space is assumed to be empty (drained conditions), the composite viscous
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behavior expressed by L(t) results from the viscoelastic response of the solid phase. The contact

creep compliance L(t) thus depends on the solid’s contact creep compliance ℓs(t), the solid’s

Poisson’s ratio νs (t) (which may or may not be time-dependent), and on microstructure and

morphology parameters (packing density η, percolation threshold η0):

L(t)

ℓs(t)
= ΠL(t)(νs (t) , η, η0) (4.102)

In a similar manner, consider an indentation relaxation test, which gives access to the contact

relaxation modulus M (t) from (3.11) or (3.30):

M (t) =
P (t)

φh
1+1/d
max

= M0
P (t)

Pmax
(4.103)

whereM0 is the instantaneous elastic indentation modulus, Pmax the instantaneous indentation

force, and P (t) the force relaxation history. For a solid-pore composite material, the contact

relaxation modulus M (t) depends on:

M(t)

ms (t)
= ΠM(t) (νs (t) , η, η0) (4.104)

where ms (t) is the solid’s contact relaxation modulus.

4.4.2 Time—Independent Poisson’s Ratio of the Solid Phase

In the case of a time-independent Poisson’s ratio of the solid phase (as frequently admitted

in viscoelastic indentation analysis [103] [141])5, the dimensionless functions ΠL(t) and ΠM(t)

defined by (4.102) and (4.104) are readily recognized to be time-independent as well. In par-

ticular, ΠM (νs = cst, η, η0) is recognized as the normalized instantaneous elastic indentation

modulus defined by (4.3). To determine function ΠL(νs = cst, η, η0) we take the s-multiplied

5As a reminder, a time-independent Poisson’s ratio means that K (t) ∝ G (t); that is the time-dependent
bulk relaxation and shear relaxation moduli have the same time dependency. In the Laplace domain a constant

Poisson’s ratio means ν̂s(s) ∝ 1/s so that sν̂s(s) = c, where c is a constant.
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Laplace transform of (4.102) and (4.104):

s L̂(s) = s ℓ̂s(s) ΠL(νs = cst, η, η0) (4.105)

s M̂(s) = s m̂s(s) ΠM (νs = cst, η, η0) (4.106)

If we remind ourselves that L(t) and M(t), as well as ℓs (t) and ms (t), are related, in the

Laplace domain, by Eq. (3.46), it follows:

(
sL̂(s)

)−1
= sM̂(s);

(
sℓ̂s(s)

)−1
= s m̂s(s)

⇓ (4.107)

1

ΠL(νs = cst, η, η0)
= ΠM (νs = cst, η, η0)

Thus, for a time-independent Poisson’s ratio of the solid phase, the following deserves attention:

1. The creep rate of the composite, L̇ (t), scales linearly with the solid’s creep rate, i.e.,

L̇ (t) =
1

ΠM (νs, η, η0)
ℓ̇s (t) (4.108)

For instance, if the contact creep rate of the solid phase is governed by a Maxwell unit,

ℓ̇s ∝ 1/ςs, then the contact creep rate of the composite is also governed by a Maxwell

unit, L̇ ∝ 1/ςhom, and the viscosities are related by:

ςhom

ςs
= ΠM (νs, η, η0) (4.109)

Similarly, if the contact creep behavior of the solid phase is logarithmic with respect to

time (ls(t) = 1/ms + ln(t/τ + 1)/(4Cs), see Section 3.3.2) with a creep rate governed

by the modulus Cs, then the contact creep behavior of the composite is also logarithmic

w.r.t. time with a creep rate magnitude governed by the modulus C:

C

Cs
= ΠM (νs, η, η0) (4.110)

2. The scaling with the packing density of the composite creep and relaxation properties of
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the composite, L (t) and M (t), is provided by the elastic indentation modulus — packing

density scaling relations ΠM (νs, η, η0); that is by Eq. (4.34) for a matrix—pore inclusion

morphology (η0 = 0) and by Eq. (4.37) for a perfectly disordered granular morphology

(η0 = 1/2). The composite indentation creep magnitude, therefore, should scale with the

composite indentation stiffness; for instance:

ςhom

M
=

ςs
ms

; for Maxwell creep (4.111)

C

M
=

Cs
ms

; for logarithmic creep (4.112)

4.4.3 Deviatoric Creep of the Solid Creep

The time-dependent behavior of the solid phase is now assumed to be restricted to its shear

component and governed by a Maxwell unit of shear viscosity, ςs/4. The factor 1/4 is introduced

so that the viscosity of the solid’s contact creep compliance at large times is ςs (see Section

3.3.2; Eq. (3.51)). The bulk relaxation modulus Ks(t) and the shear creep compliance Jds (t) of

the solid phase are:

ks(t) = ks → k̂s(s) =
ks
s

(4.113)

Jds (t) =
1

gs
+

4t

ςs
→ Ĵds (s) =

1

sgs
+

4

s2ςs
(4.114)

so that:

ĝs(s) =
4

s2Jds (s)
=

1

s2

(
1

sgs
+

4

s2ςs

)−1
(4.115)

The solution of the viscoelastic problem is found in the Laplace domain by applying an s-

multiplied Laplace transform to the solution of any linear elastic homogenization scheme (i.e.,

Eqs. (4.31) and (4.32) for the Mori-Tanaka scheme or Eqs. (4.35) and (4.36) for the self-

consistent scheme). Here, we are particularly interested in the asymptotic behavior at large

times -when the effect of transient creep becomes negligible. The asymptotic behavior of the
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creep properties defined by Eqs. (4.113) and (4.114) is:

lim
s→0+

k̂s(s) = +∞ (4.116)

lim
s→0+

ĝs(s) = ςs/4 (4.117)

We readily verify that the solid’s contact relaxation modulus, in the Laplace domain, for large

times is:

lim
s→0+

m̂s(s) = lim
s→0+

(
4ĝs(s)

3k̂s(s) + ĝs(s)

3k̂s(s) + 4ĝs(s)

)
= ςs (4.118)

We now want to determine the composite contact relaxation modulus, i.e., the homogenized

viscosity ςhom, for large times. To this end, we note that the homogenized bulk relaxation

modulus Khom(t) and the homogenized shear relaxation modulus verify in the Laplace domain:

lim
s→0+

s K̂hom(s) = K0 lim
s→0+

s ĝs(s) (4.119)

lim
s→0+

s Ĝhom(s) = M0 lim
s→0+

s ĝs(s) (4.120)

where K0 = K (νs = 0.5, η, η0) and M0 = M (νs = 0.5, η, η0) are the elastic pore morphology

factors (4.89) and (4.89) evaluated for an incompressible solid phase. Finally, substituting

(4.119) and (4.120) into (3.9) yields the contact relaxation modulus in the Laplace domain in

the form:

lim
s→0+

sM̂(s) = lim
s→0+

(
4sĜhom(s)

3sK̂hom(s) + sĜhom(s)

3s K̂hom(s) + 4s Ĝhom(s)

)
(4.121)

= M0
3K0 +M0

3K0 + 4M0
lim
s→0+

s m̂s(s)

= ΠM (νs = 0.5, η, η0) lim
s→0+

s m̂s(s) (4.122)

or equivalently, for large times:

ςhom

ςs
= ΠM (νs = 0.5, η, η0) (4.123)
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Therefore, after a transient phase, the contact creep compliance of the composite at large times

is governed by a Maxwell unit of viscosity ςhom that relates to the shear viscosity ςs of the solid

by the elastic scaling relation of an incompressible material. As a consequence, and in contrast

to the case of a time-independent Poisson’s ratio, the viscosity ςhom of a composite composed

of a solid exhibiting deviatoric creep no longer scales linearly with the indentation modulus, as

in Eq. (4.111), but by:
ςhom

M
=

ΠM (νs = 0.5, η, η0)

ΠM (νs, η, η0)

ςs
ms

(4.124)

To evaluate the order of this non-linearity we consider the two characteristic pore morpholo-

gies of the solid-pore composite depicted in Figure 4-1 and calculate:

ΠM (νs = 0.5, η, η0) = M0
3K0 +M0

3K0 + 4M0

where:

• In the case of a matrix—pore inclusion morphology (η0 = 0):

KMT
0 = lim

ν→0.5
K (νs = 0.5, η, η0 = 0) =

4η

3(1− η) (4.125)

MMT
0 = lim

ν→0.5
M (νs = 0.5, η, η0 = 0) =

3η

5− 2η
(4.126)

Thus:

ΠMT
M (νs = 0.5, η, η0 = 0) =

3

4

(23− 11η) η

(5− 2η) (8− 5η)
(4.127)

• In the case of a perfectly disordered porous material (η0 = 1/2):

KSC0 = lim
ν→0.5

K (νs = 0.5, η, η0 = 1/2) =
4η (2η − 1)

(1− η) (2 + η)
(4.128)

MSC
0 = lim

ν→0.5
M (νs = 0.5, η, η0 = 1/2) =

3 (2η − 1 )

2 + η
(4.129)

Thus,

ΠSC
M (νs = 0.5, η, η0 = 0) =

3

4

(2η − 1) (3η + 1)

(η + 2)
(4.130)

A comparison of Figures 4-8a and 4-8b shows that the scaling of ςhom/M with the packing
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Figure 4-8: Evidence of the non-linearity of the ςhom/M versus ςs/ms scaling for (a) a matrix-
pore inclusions morphology and (b) a granular morphology. νs is the instantaneous elastic
Poisson’s ratio.
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density η strongly depends on the morphology: for a matrix-pore inclusions morphology this

scaling relation is convex for all elastic Poisson’s ratios, whereas, for a granular morphology,

this scaling relation is concave for all elastic Poisson’s ratios.

4.5 Concluding Remarks: Probing Microstructure by Indenta-

tion Testing

While classical indentation analysis proceeds by applying a continuum scale model to inden-

tation data, an extension of this method to composite materials is possible. In this Chapter,

we showed that the indentation modulus M , the indentation hardness H and the contact creep

compliance L (t) determined from an indentation test on a two phase solid-pore composite have

one thing in common: The microstructure. It is on this basis that it becomes possible to

link indentation data of a composite material to constituent properties of the solid phase and

microstructural morphology information. The packing density scaling relations for different

morphologies derived in this Chapter provide a wealth of information about the link between

the microstructure and the elasticity, strength and creep properties of the composite that are

accessible by indentation testing. In other words, an indentation test provides a means of prob-

ing the microstructure. In a forward application, the developed packing density relations allow

one to predict the indentation response of the composite based on known constituent properties

and known microstructural information. But the true advantage of the scaling relation is in

its inverse application, that is the determination of the microstructure and/or the constituent

properties from a contact experiment.

Assuming that no information is available at the microscopic scale, six unknowns have to

be determined: Two strength properties of the solid phase (cs and αs, or hs and αs), two

elastic parameters (ms, νs), one porosity or packing density (η = 1− ϕ) and the morphology

(characterized by its packing density η0 at percolation). Those six unknowns are to be compared

with only two measurements (M and H) provided by an indentation test.6 The problem is

clearly ill-posed.

6The contact creep compliance and solid viscous properties are for now disregarded in this reverse analysis,
since an indentation test designed to correctly assess the strength properties will most likely be too short in
duration to provide a reliable measurement of the creep properties (see Chapter 3).
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Let us now perform a large number N of indentations at different locations on the surface

of the composite. Since the solid properties and morphology are assumed constant within the

sample, while the packing density can vary locally, N+5 unknowns now have to be determined:

Five mechanical and morphological properties of the solid, and N local packing densities. Those

N + 5 unknowns are to be compared with the 2N measurements provided by N indentation

tests. Hence, in an inverse application, N ≥ 5 indentation tests are required to determine from

experimental (M,H) values the solid properties (ms, νs, cs, αs), the percolation threshold η0 and

the N packing densities η. Therefore, provided the existence of a unique solid phase present in

the porous microstructure, the scaling relations are a versatile tool to probe the microstructure

sensed by the large array of grid indentation tests, typically 2N ≫ N +5; and a full assessment

of the mechanical and morphological properties of the solid phase is theoretically possible by

reverse analysis. We will extensively employ this method for cement-based materials as a means

to identify the microstructure and constituent properties.
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Chapter 5

Statistical Indentation Analysis of

Multiphase Materials

This Chapter deals with the indentation analysis of multiphase composite materials. By mul-

tiphase composites, we mean materials that exhibit a spatial heterogeneity of the material

properties as a consequence of microstructure or composition, or both. This spatial hetero-

geneity of properties calls for statistical indentation techniques that enable (1) the assessment

of the mechanical properties of each individual phase and (2) the quantification of the effect

of this spatial heterogeneity on stiffness, strength and creep properties of the composite mate-

rial. These techniques complement the micromechanics-based indentation analysis developed

in Chapter 4. In fact, in contrast to the solid—pore composite that exhibits a heterogeneity at

a scale much smaller than the indentation depth (see Section 4.1.2), the focus of this Chapter

is on indentation depths much smaller than the characteristic size of the heterogeneity (Figure

5-1). With this focus in mind, the first Part of this Chapter complements recent developments

of Constantinides et al. [57] [54] of the grid-indentation technique, and the second Part presents

original developments of a self-consistent indentation technique that allows the determination of

composite indentation properties from the heterogeneous indentation response of a multiphase

material.
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D

Indentations 

Figure 5-1: Principle of statistical indentation analysis: The characteristic size of the indents is
smaller than the characteristic size of the material heterogeneities of the multiphase material.

5.1 Problem Statement

To motivate the forthcoming developments, consider an indentation test on a multiphase mate-

rial. The characterize size of the heterogeneity (e.g., particle size) is denoted by D. We want to

determine the characterize size ds of the material volume that is activated by the indentation

test on the multiphase material. This size ds can be roughly associated with a half-sphere

surrounding the indenter, as the iso-values of the stress field show (Fig. 5-2a). The indentation

response will depend mostly on the material within a distance ds from the indenter tip. If

ds < D an indentation test may probe only one phase and therefore characterize its intrinsic

phase properties (Fig. 5-3).

The size ds of the volume of material probed by the indentation test depends on the in-

dentation depth h, on the geometry of the indenter (for instance, equivalent half-cone angle

θ of a Berkovich indenter), on the properties of the indented material (indentation modulus

M , Poisson’s ratio ν, hardness H, friction angle α, contact creep compliance L(t)), and on

the characteristic size of the heterogeneity, D. A straightforward dimensional analysis of the

problem yields:
ds
h

= Πds

(
θ,
M

H
, ν, α,

L(τ ≤ t)
H

,
h

D

)
(5.1)

The first five invariants are material properties (eventually of the composite material), while

the last invariant, h/D, links the indentation depth to a characteristic material scale, the
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a)
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Figure 5-2: Numerical simulation of Berkovich indentation on an elasto-plastic material with
linear hardening (from [109]). (a) Von Mises effective stress and (b) effective plastic strain. The
simulations were performed in three dimensions.

151



h

Phase 1

Phase 2

D

ds

Figure 5-3: Characterization of intrinsic phase properties from shallow indentation depths. The
red circle is a schematic of the volume of material probed during the indentation test.

characteristic size of the heterogeneity. In the case h/D→ 0 this invariant skips out of the set

of dimensionless quantities. It follows:

h/D→ 0 ⇒ ds ∝ h (5.2)

In this case, h is the sole length scale in the infinite half-space, and the problem respects

the condition of self-similarity. The indentation properties (M,H,L (t)) extracted with a test

h≪ D are representative of the elasticity, strength and creep properties of the phase of size D.

In contrast, the properties extracted with a test h/D ≫ 1 sample the composite response, as

discussed in Section 4.1.2.

The focus of this Chapter is two-fold:

1. For the case h/D ≪ 1, to develop a statistical indentation technique that allows the

assessment of phase properties of multiphase composite materials, and

2. To link the heterogeneity of the indentation data to homogeneous composite indentation

properties representative of the behavior of the composite at scales h/D≫ 1.
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5.2 Grid—Indentation Technique for Multiphase Materials

Recognizing the high heterogeneity of multiphase materials, application of the indentation tech-

nique is a challenge, as it is difficult to choose to indent on a specific material phase with

sufficient repeatability. To address this challenge, it is advantageous to perform large grids of

indentations on heterogeneous samples. Then, if the indentation depth is chosen properly, each

indentation test may be treated as an independent statistical event, and statistical techniques

may be applied to analyze the results. This is the fundamental idea of the grid-indentation

technique [57] [54].

To illustrate its purpose, consider the following thought-experiment:

Consider an infinite half-space composed of two materials of different mechanical

properties. Provided that the indentation depth is much smaller than the charac-

teristic size of the two phases, a random indentation on the sample surface provides

access to either of the phase properties, with a probability that equals the surface

fraction the two phases occupy on the sample surface. By contrast, an indenta-

tion to a depth much larger than the characteristic size of the two phases samples

mechanically the composite response.

This thought-experiment illustrates how the classical tools of instrumented indentation can

be extended to heterogeneous materials through a careful choice of the indentation depth which

depends on the size of the elementary components. It calls for a statistical analysis of a large

array of indentation tests and a subsequent statistical deconvolution of the indentation results.

This Section reports on recent developments of and improvements to the grid-indentation tech-

nique.

5.2.1 Choice of Depth of Indentation

The choice of a critical depth hcrit below which intrinsic phase properties can reliably be mea-

sured by indentation was studied both analytically and numerically (for a detailed review, see

[57] [54]). Numerical simulations of conical indentations on (almost) rigid perfectly plastic

biphasic systems were performed by Durst et al. [71], who focused on the measurement of the

indentation hardness. They considered phases of different shapes (Fig. 5-4). Their simulations
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show that, if a < 0.7D (where a is the contact radius), the indentation hardness of the indented

phase is correctly measured. Their simulations also show that this criterion is almost the same

for a particle embedded in a matrix and a thin film on a substrate; that is, hcrit is almost inde-

pendent on the shape of the indented phase and depends only on its characteristic size D. This

result may be due to the quasi-spherical shape of the material volume probed by indentation

(see Fig. 5-2a). But a criterion for a reliable measurement of the indentation modulus may be

more stringent than the one obtained by Durst et al. since the material volume that is solicited

elastically below the indenter is much larger than the volume solicited plastically (see Figure

5-2b).

Constantinides et al. [57] [54] employ the thin-film analogy1 to determine a critical h/D

ratio below which the elastic properties of the indented composite do not diverge more than

10% from the elastic properties of the phase (here the film; see Fig. 5-5):

h

D
<

1

10
(5.3)

This result, which holds for both ‘hard-on-soft’ and ‘soft-on-hard’ composites with elastic mis-

match ratios comprised within 1/5 ≤ Esubstrate/Efilm < 5, is expected to hold for the mea-

surement of the indentation hardness and for other shapes of the indented phase as well. The

1The indentation analysis of a film-substrate composite (Figure 5-4c) aims to link the measured composite
modulus Eeff to the elastic moduli Efilm and Esubstrate of the film and the substrate, respectively:

Eeff = Efilm + (Esubstrate − Efilm)Ψ

where Ψ is a weight function that depends on the ratio of the contact radius a to the film thickness a/ds. For
moduli mismatch ratio Efilm/Esubstrate between 0.5 and 2, Gao et al. [79] derived the following closed-form
solution:

ΨG = 1−

[
2

π
tan−1

(
D

a

)
+

1

2π(1− ν)

(
(1− 2ν)

(
D

a

)
ln

(
1 + (D/a)2

(D/a)2

)
−

(D/a)

1 + (D/a)2

)]

Using the auxiliary functions introduced by Sneddon and Ting [180] [168], Perriot and Barthel [146] empirically
extended the previous equation to a wider range of modulus mismatch ratios Efilm/Esubstrate between 0.01 and
100:

ΨPB =

[

1 +

(
D

a
k

)1.27]−1

where:

log(k) = −0.093 + 0.792 log

(
Esubstrate
Efilm

)
+ 0.05

(
log

(
Esubstrate
Efilm

))2
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Figure 5-4: Normalized indentation hardnesses obtained from numerical simulations of conical
indentations on a biphasic material (adapted from [71]). The indented phase is (a) a particle,
(b) a needle, and (c) a film. Hp is the indentation hardness of the indented phase, Hnum is the
indentation hardness output from the numerical simuation, a is the contact radius and h is the
indentation depth. ds is the characteristic size of the indented phase, i.e., the radius and depth
of the particle, or the radius of the needle, or the thickness of the film.
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Figure 5-5: Critical a/ds ratio versus Esubstrate/Efilm according to Perriot and Barthel [146]
for which the composite modulus Eeff is within 10% of the film modulus Efilm (from [54]).

relevance of this criterion, also known as Buckle’s rule-of-thumb, has been shown experimentally

for titanium — titanium monoboride composites [54] .

To measure the indentation properties of a specific phase in the heterogeneous material, one

may think of optically targeting the phase of interest and performing an indentation test at the

exact chosen location. But such an approach is likely to fail, since an optical image is only a

two-dimensional representation of a three-dimensional structure: it may well be that just below

the surface another phase is present and that the measured response is a composite response.

The grid indentation technique presented next precisely addresses this issue.

5.2.2 Principle of Grid-Indentation Technique

Since one may never be sure that one indentation test provides the sought-after intrinsic in-

dentation properties of a given phase and not a composite response, the main idea of the

grid-indentation technique is to perform a large array of indentations tests on a sample surface

and analyze the results statistically.

To introduce the quantities that are measured by the technique, reconsider the introductory

thought experiment of a grid-indentation campaign of a two-phase composite. A large number
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of indentations is performed at random locations on the surface of the two-phase material (Fig.

5-6a). The indentations are shallow enough to ensure that the criterion (5.3) is respected.

Although a few indentations may measure a composite response, criterion (5.3) ensures that a

large majority of the indentations will probe the intrinsic properties of the two phases. It is

intuitively appealing to display the experimental results as histograms (or frequency plots) of

the measured indentation properties (indentation modulus M , indentation hardness H, etc.),

which in the case of the two-phase composite material display two peaks (Fig. 5-6c). The mean

value of each peak represents the mean phase property.

The area below each curve of the histogram is a measure of the percentage of all indentations

performed on the corresponding phase, and is therefore a measure of the surface fraction of each

phase. For a perfectly disordered material, surface fractions and volume fractions are identical,

which is known at the Delesse principle [66]. Therefore, the volume fraction of each phase of

the heterogeneous material can also be obtained by an analysis of the experimental frequency

plot.

The randomness of the location of the indentations ensures that the measured properties are

not correlated from indentation to indentation. If the indented material is perfectly disordered,

this zero correlation can also be ensured by performing the indentations on a grid, as long as

the spacing between indentations is greater than the characteristic size D of the phases (Fig.

5-6b). Since it is easier to program an indenter to perform indentations on a grid, the approach

is referred to as ‘grid—indentation technique’ [54].

The grid-indentation technique, here described for a two-phase composite, obviously ap-

plies to more phases are well, provided they exhibit sufficient contrast (‘mismatch’) in their

properties. Moreover, the grid-indentation technique can be applied for any property obtained

from the indentation tests, i.e., indentation modulus M , indentation hardness H, contact creep

compliance L (t) (Chapter 3) or packing densities (Chapter 4). To ensure repeatability of the

technique, the analysis of the frequency plot, called the deconvolution technique, needs to be

automatized. Such an automatization is presented next.
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Figure 5-6: Indentations performed on a heterogeneous two-phase material. Each indenta-
tion (represented by a red triangle reminiscent of Berkovich indents) provides the mechanical
properties of one of the two phases. (a) Indentations are performed at random locations. (b)
Indentations are performed on a grid. (c) Resulting histogram (frequency plot).
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5.2.3 Deconvolution Technique

The key to the determination of phase properties in the grid-indentation technique is the iden-

tification of the statistical distribution of the phases. This requires a deconvolution of the

heterogeneous data, hence the name ‘deconvolution technique’. In its original development [57]

[54], the deconvolution technique was carried out manually by fitting a number of probabil-

ity density functions (PDF) to the experimental frequency plot (normalized histogram) of the

measured quantity; which makes the deconvolution results dependent on the operator. This

Section proposes a technique that automatizes this process.

Choice of Phase Distribution Functions

The first point that need to be addressed is the best a priori choice of distribution function for

each peak in the frequency plot. A distribution function is uniquely defined by its statistical

moments [155]:

• The first moment about the origin is the mean.

• The second moment around the mean is the variance and is usually denoted by σ2, where

σ is the standard deviation.

• The third standardized moment, usually written as γ1, is the skewness and is a measure of

the asymmetry of the distribution function (Fig. 5-7). A symmetric distribution function

verifies γ1 = 0.

• Higher-order moments.

If the measurements and the material were perfect, for infinitely shallow indentations one

would expect the peaks to be infinitely sharp (Fig. 5-8a). In this case, each peak would be

characterized by its first moment (mean value) only. Practically however, there are several

reasons for which the peaks of the histogram are not infinitely sharp, requiring the use of

moments of higher order:

• The measurements exhibit some noise. The noise is considered as random and creates a

spread of the peaks, but no asymmetry (Fig. 5-8b).
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Figure 5-7: Example of distribution functions with negative skewness (γ1 < 0) and positive
skewness (γ1 > 0).

• Each phase has its own intrinsic variability, which also creates a spread of the peaks (Fig.

5-8b). It may well be that, as a result of its processing, the material has a distribution

function of its properties within each phase which is asymmetric. Nevertheless, in an a

priori analysis, with no further information available on processing, it is not possible to

justify an asymmetric distribution of the properties in each phase.

• The indentations are not infinitely shallow. Even for an ideal material and ideal measure-

ments, due to their finite depth some indentations will solicit mechanically two (or more)

phases simultaneously, and the measured property will be a composite property. Quanti-

fying the composite response is complicated, since it is the result of a three-dimensional

interaction between the indenter probe and the phases probed. Nevertheless we can assert

that the composite response must be bound by the values of the individual peaks (see Fig.

5-8c). As a result, the finite depth of the indentation introduces some asymmetry: The

lowest peak is better characterized by a positive skewness, γ1 > 0; and the highest peak

with a negative skewness γ1 < 0. In order to automatize the deconvolution process, we

choose to characterize all peaks with only one distribution. The choice of a distribution

with zero skewness γ1 = 0 is the most appropriate.

In summary, the distribution sought must have non-zero first and second moments (mean

and variance) and a zero skewness γ1 = 0. For the sake of simplicity, the distribution is chosen

so that all standardized central moments of higher order are zero. This distribution is the

Gaussian distribution.
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Figure 5-8: Expected frequency plots for a biphasic material. (a) Perfect measurements and
materials and infinitely shallow indentations; (b) Imperfect measurements or material and infi-
nitely shallow indentations; (c) Perfect measurements and material and indentations with finite
depth.
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Implementation of Deconvolution Technique

The deconvolution begins with the generation of the experimental Cumulative Distribution

Function (CDF). Let N be the number of indentation tests performed on a specimen and

{Xi}i=1..N the sorted values of the measured property we want to deconvolute. This parameter

can be the indentation modulus M , the indentation hardness H, or any other property ob-

tained from the indentation test (creep properties, packing density, etc). The N points of the

experimental CDF of X, denoted by DX , are obtained from:

DX (Xi) =
i

N
− 1

2N
; for i ∈ [1;N ] (5.4)

Once the experimental CDFs are known, the form of the model CDFs are specified. We

consider the heterogeneous material to be composed of nmaterial phases with sufficient contrast

in mechanical phase properties. The j-th phase occupies a volume fraction fj of the indented

surface. In an a priori analysis (as discussed here above), the best choice for the distribution of

the mechanical properties of each phase is a Gaussian distribution, identified by its mean value

µXj and its standard deviation sXj . The CDF of the j-th Gaussian distributed phase is given

by:

D(Xi;µ
X
j , s

X
j ) =

1

sXj
√

2π

∫ Xi

−∞
exp

(
−(u− µXj )2

2(sXj )2

)
du (5.5)

The unknowns {fj, µXj , sXj } for j ∈ [1, n] are determined by minimizing the difference between

the experimental CDFs and the weighted model-phase CDFs:

min
N∑

i=1

∑

X




n∑

j=1

fjD(Xi;µ
X
j , s

X
j )−DX(Xi)



2

s.t. (5.6)
n∑

j=1

fj = 1

where the constraint of the minimization problem requires that the volume fractions of the

different phases sum to one. To ensure that phases have sufficient contrast in properties, and

thus to avoid that two neighboring Gaussians overlap, the optimization problem is additionally
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Figure 5-9: Example of a 3-Gaussian deconvolution. The results are displayed in terms of (a)
histograms and probability density functions (b) cumulative distributions functions.

constrained by:

µXj + sXj ≤ µXj+1 + sXj+1 (5.7)

By way of illustration Figure 5-9 displays the results of a deconvolution by three Gaussians.

The results of the deconvolution process will usually be displayed in the form of a histogram

(Figure 5-9a). The continuous analog of a discrete histogram is a probability density function

(PDF) [155], and the frequency plots will also be referred to as probability density functions.

The reason for displaying deconvolution results in terms of probability density functions (PDF)

instead of cumulative distribution functions (CDF) becomes apparent when comparing Figures

5-9a and 5-9b: PDFs are more intuitive than CDFs for physical interpretation.

The deconvolution process, here presented for one measured parameter, can easily be ex-

tended to several parameters. For instance, indentation modulus, indentation hardness, creep
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properties and packing density can all be deconvoluted simultaneously, meaning that the num-

ber of phases and their volume fractions are fixed for the sample. For instance, in a simultane-

ous deconvolution of M and H, the unknowns are {fj, µMj , sMj , µHj , sHj }j=1..n, and the process

is identical to the process presented earlier in this Section. Instead of (5.6), the function to

minimize is:

min
N∑

i=1

∑

X=(M,H)




n∑

j=1

fjD(Xi;µ
X
j , s

X
j )−DX(Xi)



2

s.t. (5.8)
n∑

j=1

fj = 1

In summary, the proposed deconvolution technique, in association with the grid-indentation

technique, enables the measurement of phase properties of heterogeneous multiphase materials:

Volume fractions, mean values and standard deviations of the mechanical phase properties.

5.3 Self-Consistent Indentation Technique for Multiphase Ma-

terials

The previous Section described a method for the identification of phase properties of het-

erogenous materials obtained by carefully choosing the indentation depth, h/D < 1/10. An

indentation test operated at h/D≫ 1 would sample mechanically the composite response and

lead to the experimental determination of homogenized properties. The problem we address in

this Section is to link the scale of shallow indentation (h/D≪ 1) with the indentation proper-

ties at the composite scale (h/D≫ 1) – without performing an actual indentation test at the

composite scale. In other words, the aim of this Section is to derive estimates of the composite

response in the form of homogenized indentation quantities, Mhom, Hhom and Lhom (t) on the

basis of a large heterogeneous data set of indentation properties {Mi, Hi, Li(t)}i=1..N generated

at smaller scales, e.g., by the grid indentation technique. The two scales naturally satisfy the

scale separability condition in the sense of Eq. (4.1), which makes the use of micromechanics

theory most suitable.

164



5.3.1 Homogenized Indentation Modulus

To illustrate the approach, we start with the indentation modulus.

Consider a large array of indentation tests that satisfy the condition h/D < 1/10. In

these tests, a heterogeneous data set of indentation moduli {Mi}i=1,N is determined which

is representative of the heterogeneities of the multiphase material. The question we want to

address analytically is: What is the corresponding homogenized indentation modulus Mhom

that would be measured in indentation tests operated to h/D≫ 1? The problem is treated in

the framework of linear micromechanics (see Section 4.2.2).

Virtual Composite Material

The fundamental idea of the micromechanics approach developed below is that each test per-

formed at a scale h/D < 1/10 is representative of a material phase, so that N indentation

tests define a ‘virtual’ composite material which is composed of N phases characterized by N

indentation moduli {Mi}i=1,N (Fig. 5-10). From the variational bounds of linear elasticity, it

is known that the stiffness of the composite is situated in between the Reuss bound (uniform

stress) and the Voigt bound (uniform strain), which for a constant Poisson’s ratio for all phases

apply equally to the indentation modulus:


 1

N

∑

(N)

1

Mi



−1

≤Mhom ≤ 1

N

∑

(N)

Mi (5.9)

The focus of the micromechanics approach is to refine these estimates by considering the inter-

action between highly heterogeneously distributed phases. In this sense, Mhom can be viewed

as the homogenized indentation modulus of the virtual composite material composed of N

randomly distributed phases in the material.

Self-Consistent Micromechanics Model

The inputs to the micromechanics model are:

• The volume fraction of each phase, φi = 1/N ,
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Figure 5-10: (a) Grid of indentations performed on a biphasic material and (b) associated
virtual N -phase material. N is the number of indentations performed.

• The elastic properties of each phase, given by the measured indentation modulus Mi and

the Poisson’s ratio νi so that the bulk modulus Ki and shear modulus Gi read:

Ki =
Ei

3(1− 2νi)
=

1− ν2i
3(1− 2νi)

Mi

Gi =
Ei

2(1 + νi)
=

1− νi
2

Mi

(5.10)

• The morphology of the virtual composite. Given that each virtual phase only occupies a

volume fraction φi = 1/N , no phase can reasonably play the role of a matrix. In contrast,

a polycrystal morphology seems particularly well-suited. The self-consistent scheme yields

particularly good estimates for a polycrystal morphology, for which it was in fact initially

developed [89] [107].

Using these elements, an estimate of the homogenized indentation modulus of the virtual

composite material is obtained from relation (4.30), which we recall:

Chom =

[
N∑

i=1

φiCi :
(
I + PSC :

(
Ci −Chom

))−1
]

:

[
N∑

i=1

φi

(
I + PSC :

(
Ci −Chom

))−1
]−1

(5.11)

Considering a spherical morphology for each virtual phase, the Hill tensor PSC is calculated

with Eq. (4.19), and Eq. (5.11) reduces in the isotropic case (Ci = 3Ki J+ 2GiK and Chom =
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3Khom J+ 2GhomK) to:

Khom

[∑N
i=1

1

Khom + αhom(Ki −Khom)

]
=
∑N
i=1

Ki
Khom + αhom(Ki −Khom)

Ghom
[∑N

i=1

1

Ghom + βhom(Gi −Ghom)

]
=
∑N
i=1

Gi

Ghom + βhom(Gi −Ghom)

(5.12)

where:

αhom =
3Khom

3Khom + 4Ghom

βhom =
6

5

Khom + 2Ghom

3Khom + 4Ghom

(5.13)

Eqs. (5.12) are non-linear because of the coupling introduced by αhom and βhom. For large

N , Eqs. (5.12) cannot be solved analytically, but can easily be solved numerically (e.g., with

Matlab). Then, Mhom is calculated from Eq. (2.20):

Mhom = 4Ghom
3Khom +Ghom

3Khom + 4Ghom
(5.14)

Effect of the Set of Virtual Poisson’s Ratios on Estimated Homogenized Indentation

Modulus

The sole non-experimental input of the approach is a set of Poisson’s ratios {νi}i=1,N of the N

virtual phases. The effect which this set has on the homogenized indentation modulus Mhom

is here investigated numerically. A set of N = 400 values {Mi}i=1,N , chosen randomly between

0 and 100 GPa, is generated. It is instructive to note that the Reuss-Voigt bounds (5.9) for

N →∞ random realizations between 0 and Mmax read:

0 = lim
N→∞

(
1

N

N∑

i=1

1

(i/N)

)−1
≤ Mhom

Mmax
≤ lim
N→∞

(
1

N

N∑

i=1

(i/N)

)
=

1

2
(5.15)

To study the effect of the Poisson’s ratio, the following cases are investigated:

• The Poisson’s ratio νi is assumed to be the same in all N phases. For each νi, Eq. (5.12)

is solved numerically with Matlab. Figure 5-11 displays the results of the calculation.

The homogenized Poisson’s ratio νhom is roughly equal to the Poisson’s ratio νi of the

virtual phases. In contrast, the homogenized indentation modulus varies little with the
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Figure 5-11: Effect of a constant Poisson’s ratio νi (assigned to 400 virtual phases) on the
homogenized indentation modulus Mhom (blue diamonds, left axis) and on the homogenized
Poisson’s ratio νhom (red circles, right axis).

Poisson’s ratio νi, Mhom/Mmax = 0.415± 1.5%.

• The Poisson’s ratios {νi}i=1,N are assumed to be uniformly distributed over [0, 0.5]. 100

sets are generated, and for each set Eq. (5.12) is solved numerically. The homogenized

indentation modulus varies little for the 100 numerical solutions, Mhom/Mmax = 0.415±
0.3%.

The case studies show that the Poisson’s ratio {νi}i=1,N assigned to the phases has little

effect on the homogenized indentation modulus Mhom, which, however, deviates significantly

from the Reuss-Voigt bounds (5.15). The set of a constant Poisson’s ratio νi = 0.2 is chosen,

since it provides a most convenient way to reduce the set of Equations (5.12) to one single

equation:
N∑

i=1

1

1 + 1
2(Mi/Mhom − 1)

=
N∑

i=1

Mi/M
hom

1 + 1
2(Mi/Mhom − 1)

(5.16)

This equation can readily be solved numerically and provides a simple way to estimate, from

a set of indentation moduli {Mi}i=1,N measured with a grid of indentations, the homogenized

indentation modulus Mhom.

168



5.3.2 Homogenized Indentation Hardness

We now seek a similar link for the indentation hardness, namely between the set of indentation

hardness values {Hi}i=1..N determined at a scale h/D ≤ 1/10 and the homogenized indentation

hardness Hhom representative of the composite response at a scale h/D ≫ 1.2 Similar to

the developments in Section 5.3.1, the micromechanical system is a virtual composite material

composed of N phases. The strength behavior of each phase is characterized by the indentation

hardness Hi.

The homogenization is based on strength homogenization theory (Section 4.3.2). As we

shall see below, the strength upscaling of an N -phase material is challenging, both theoretically

and numerically. In order to reduce the complexity, we restrict ourselves to purely cohesive

materials governed by a Von Mises criterion:

fi (σ) =
√
J2 − ci ≤ 0 (5.17)

where σd =
√

2J2 =
√
s : s with s = σ−1

3 tr(σ)1. Herein, ci is the cohesion of phase i, which

relates to the ‘phase hardness’ Hi by: (Eq. 2.89, α = 0):

Hi
ci

= 4.76 (5.18)

In other words, the strength of the i-th phase of the virtual composite material can be defined

either by the hardness Hi or by the cohesion ci. In this case, the strength homogenization of the

hardness of a N -phase composite material is equivalent to the homogenization of the cohesion

of an N -phase composite material. As a benchmark, we remind ourselves that the Voigt-Reuss

bounds of yield design for a cohesive material [61] equally apply for the hardness:

min
N
Hi ≤ Hhom ≤ 1

N

∑

(N)

Hi (5.19)

The non-linear strength homogenization approach aims at improving these bounds.

Following the approach outlined in Section 2.4.2, the strength criterion is approached, for

2Research in collaboration with B. Gathier during his Master of Science study at MIT [80].
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convexity reasons, as the limit case of a more regular elliptical criterion:

fi (σ) =

(
σm
Ai

)2
+

(
σd√
2Bi

)2
≤ 1 (5.20)

where the Von-Mises criterion is retrieved by letting Ai/Bi → +∞. The corresponding π-

function for the elliptical criterion is given by Eq. (4.83) and reads here:

πi =

√
(Aidv)

2 +
(√

2Bidd

)2
(5.21)

where dv = trd = I ′1 and dd =
√
δ : δ =

√
2J ′2. We now apply the methodology of strength

upscaling outlined in Section 2.4.2.

Step 1: Strain Rate Energy Function W0 (D) of the Comparison Composite

The first step in solving the strength homogenization problem is to determine the strain rate

energy function W0 (D) of the linear comparison composite. For a Drucker-Prager material,

the calculation of W0 (D) would have been a challenge due to the necessity of considering a

volumetric prestress τ i. For a Von Mises material, however, no volumetric prestress is needed,

and the comparison composite in the i-th phase is:

Ci = 3KiJ+ 2GiK (5.22)

Since there is no need for a volumetric prestress in the comparison composite, the macro-

scopic strain energy is readily expressed as:

W0 (D) =
1

2
D : Chom : D =

1

2
KhomD2v +GhomD2d (5.23)

where Chom is the macroscopic stiffness tensor, calculated with the linear homogenization

method. For the self-consistent (polycrystal) morphology considered, rewriting Eqs. (5.12)
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under a slightly different form yields:

Khom =

∑
i
KiKAi
∑
i
KAi

(5.24a)

Ghom =

∑
i
GiGAi
∑
i
GAi

(5.24b)

where:

KAi =
1

3

3Khom +Ghom

3Ki + 4Ghom
(5.25)

GAi =
5

2

Ghom
(
3Khom + 4Ghom

)

Gi (9Khom + 8Ghom) + 6Gi (Khom + 2Ghom)
(5.26)

so that Khom can be rewritten as:

Khom =

∑
i

Ki

3Ki + 4Ghom

∑
i

1

3Ki + 4Ghom

(5.27)

Step 2: Vi Function for an Elliptic Criterion

The derivations performed in Section 2.4.2 remain valid and the calculation of the Vi function

yields:
Ki

Gi
=

(
Ai
Bi

)2
(5.28)

and (see Eq. 4.78):

Vi =
c2i
4G

=
B2i
2G

(5.29)

Step 3: Stationarity of Π̃hom

The third step consists in exploring the stationarity of Π̃hom, defined by Eq. (4.62):

Π̃hom = stat
Ki,Gi

[
W0 (Dv,Dd) +

1

N
Vi
]

(5.30)
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so that:

∀i ∈ {1..N} , ∂Π̃hom

∂Gi
=

1

2

(
Ai
Bi

)2 ∂Khom

∂Ki
D2v +

∂Ghom

∂Gi
D2d −

1

N

1

2

(
Bi
Gi

)2
= 0 (5.31)

in which all occurrences of Ki can be replaced by Gi thanks to Eq. (5.28):

∀i ∈ {1..N} , ∂Π̃hom

∂Gi
=

1

2

∂Khom

∂Gi
D2v +

∂Ghom

∂Gi
D2d −

1

N

1

2

(
Bi
Gi

)2
= 0 (5.32)

Step 4 & 5: Strength Criterion

The fourth and fifth steps consist in replacing Dv and Dd in the stationarity conditions (4.80)

and in solving the resulting system of equations. The expressions for Dv and Dd are provided

by the state equation (4.68) of the linear comparison composite combined with Eq. (4.52):

Dv =
Σm
Khom

(5.33a)

Dd =
Σd

2Ghom
(5.33b)

Once replaced in the N stationarity conditions, Eq. (5.32) becomes:

∀i ∈ {1..N} , 1

2

∂Khom

∂Gi

(
Σm
Khom

)2
+
∂Ghom

∂Gi

(
Σd

2Ghom

)2
− 1

N

1

2

(
Bi
Gi

)2
= 0 (5.34)

which provides N equations. An additional equation is given implicitly for Ghom and Gi for

i ∈ {1..N} by combining Eqs. (5.24b), (5.25) and (5.27):

Q(Ghom, Gi) = 0 (5.35)

Consequently, a system of N + 1 equations is obtained for N + 2 unknowns: Σm is fixed;

Gi, i ∈ {1..N}, Ghom and Σd. The degree of freedom stems from the indeterminate value of

the plastic multiplier
◦
λ in yield design, which translates here into indeterminacy on a value of

Gi. Therefore the system of equations (5.34) and (5.35) can theoretically be solved, providing

for each value of Σm one value of Σd, which thus enables the homogenized strength criterion
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to be constructed. Nevertheless, implementing this system of equations is a challenge, one

reason being that Eq. (5.34) requires the calculation of ∂Ghom/∂Gi in the case that Ghom is

defined implicitly only by Eq. (5.35). Moreover, we note that the full solution of the system

of equations (5.34) and (5.35) yields the whole strength criterion of a homogenized medium

made of N phases with elliptical strength criterion, although we are interested only in the limit

case of a Von Mises criterion. Indeed, considering the Von Mises limit case will bring some

simplifications to the system of equations.

Simplifications for the Von Mises Limit Case

The cohesion chom of the homogenized medium is calculated by evaluating Σd at Σm = 0. For

Σm = 0, Eq. (5.34) simplifies:

∀i ∈ {1..N} , ∂Ghom

∂Gi

(
Σd

2Ghom

)2
− 1

N

1

2

(
Bi
Gi

)2
= 0 (5.36)

Yet an explicit form of ∂Ghom/∂Gi is still required. This explicit form is obtained in the limit

case of Von Mises criteria Ai/Bi → +∞. Controlling the way in which Ai/Bi tends toward

infinity, we impose:
A1
B1

=
A2
B2

= ... =
AN
BN

=
√
r (5.37)

For large r, the combination of Eqs. (5.27) and (5.28) yields:

Khom = r
N

∑
i

1

Gi

(5.38)

which, after differentiation, yields:

∂Khom

∂Gj
=

(Khom)2

r

1

NG2j
=
Khom

∑
i

1

Gi

1

G2j
(5.39)
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As an intermediate step, we calculate:

∂

∂Gj

[
1

Ghom(9Khom + 8Ghom) + 6Gi(Khom + 2Ghom)

]
=

− 1

3Khom

(
1

3Ghom + 2Gi

)2

3
∂Ghom

∂Gj
+

1
∑
i

1

Gi

1

G2j
(3Ghom + 2Gi) + 2δij




(5.40)

where δij is the Kronecker symbol. By combining Eqs. (5.27), (5.26) and (5.24b), Ghom is now

implicitly defined by:

Ghom
∑
i

1

Ghom(9Khom + 8Ghom) + 6Gi(Khom + 2Ghom)
=

∑
i

Gi
Ghom(9Khom + 8Ghom) + 6Gi(Khom + 2Ghom)

(5.41)

Differentiating Eq. (5.41) and grouping correctly the terms provides an explicit expression for

∂Ghom/∂Gi:

∂Ghom

∂Gi
=

Ghom

(3Ghom + 2Gi)2
+

1

5Gi2
(∑

j

1

Gj

)∑i

(Ghom −Gj)
3Ghom + 2Gj

∑
i

Gj
(3Ghom + 2Gj)2

(5.42)

In the limit case Ai/Bi → +∞, for which Khom/Ghom → +∞, Eq. (5.41) further simplifies:

Ghom
∑

i

1

3Ghom + 2Gi
−
∑

i

Gi
3Ghom + 2Gi

= 0 (5.43)

Finally recalling from Eq. (5.18) that Hhom = 4.76Σd and Bi =
√

2ci = 4.76
√

2Σd, the

system of equations (5.34) and (5.35) becomes:

∀i ∈ {1..N} , ∂Ghom

∂Gi

(
Hhom

Ghom

)2
=

1

N

(
Hi
Gi

)2

Ghom
∑
i

1

3Ghom + 2Gi
−∑i

Gi
3Ghom + 2Gi

= 0

(5.44)

where ∂Ghom/ ∂Gi is explicitly given by Eq. (5.42).
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The system of equations (5.44) can be implemented and provides, from a measured set of

indentation hardnesses {Hi}i=1..N , an estimate of the homogenized indentation hardness Hhom.

Validation

The system of Equations (5.44) is validated on two two-phase model materials, for which Gathier

[80] obtained analytical solutions. Those two model materials are:

• Solids + voids: The solid has a cohesion cs = 1. For a volume fraction of solid η = 0.7,

Gathier found a homogenized cohesion chom = 0.597. The numerical solution of Eqs.

(5.44) yields exactly the same value chom = 0.597, which indeed is situated in between

the Voigt-Reuss bounds (5.19):

0 ≤ chom

cs
= 0.597 ≤ η = 0.7 (5.45)

• Solids + hard inclusions: The solid has a cohesion cs = 1. For a volume fraction of solid

η = 0.7, Gathier found a homogenized cohesion chom = 1.577. For the solution of the

system (5.44), we need to input a value for the cohesion of the hard inclusions. A large

value cinc = 4.5 is chosen and yields exactly the same value chom = 1.577, which compares

to the Voigt-Reuss bounds (5.19) as follows:

1 ≤ chom

cs
= 1.577 ≤ η + (1− η) cinc

cs
= 2.05 (5.46)

Therefore, the method designed in this Section to assess the homogenized indentation hard-

ness Hhom from a set of indentation hardnesses {Hi}i=1..N measured with a grid of indentations

proves reliable.

5.3.3 Homogenized Indentation Creep Properties

The last Section of this Chapter derives expressions for the homogenized indentation creep

properties Lhom(t) or Mhom(t) of the composite material, based on a set of indentation creep

properties {Li(t)}i=1..N or {Mi(t)}i=1..N measured with a grid of indentations. The derivation

is based on the viscoelastic homogenization theory described in Section 2.3.3.
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Here, as in Sections 5.3.1 and 5.3.2, the indented material is modeled at a scale h/D < 1/10

as a virtual N-phase material, where N is the number of indentation tests. Phase i of volume

fraction φi = 1/N is characterized by the contact creep compliance Li(t) or, equivalently, by the

contact relaxation modulus Mi(t). Following the viscoelastic homogenization theory (Section

2.3.3), the solution of the viscoelastic problem is readily obtained from the elastic solution by

making use of the s-multiplied Laplace transform. Therefore, Lhom(t) and Mhom(t), which

are the solution of the viscoelastic homogenization of the virtual N -phase material, are readily

found in the Laplace domain by applying an s-multiplied Laplace transform to Eq. (5.16):

N∑

i=1

1

1 +
1

2
(M̂i(s)/M̂hom(s)− 1)

=
N∑

i=1

M̂i(s)/M̂hom(s)

1 +
1

2
(M̂i(s)/M̂hom(s)− 1)

' (5.47)

N∑

i=1

1

1 +
1

2
(L̂hom(s)/L̂i(s)− 1)

=
N∑

i=1

L̂hom(s)/L̂i(s)

1 +
1

2
(L̂hom(s)/L̂i(s)− 1)

The determination of Lhom(t) and Mhom(t) requires an inverse Laplace transform of Eqs.

(5.47), which, for arbitrary contact creep compliances {Li(t)}i=1..N and relaxation moduli

{Mi(t)}i=1..N , cannot be performed analytically. A possible alternative approach is to in-

vert Eqs. (5.47) numerically, making use of powerful algorithms, which are now available in

the literature (e.g., [1]). But such a numerical inversion requires the solution of Eqs. (5.47)

at several values of s, some of which for the solution is unstable. Therefore, the estimation

of the homogenized creep properties Lhom(t) and Mhom(t) remains problematic in the general

case of arbitrary {Li(t)}i=1..N or {Mi(t)}i=1..N . Two specific creep behaviors for which the

homogenized creep properties can be estimated are considered next.

Maxwell Creep

Consider that the contact creep behavior of each phase is governed by a Maxwell unit and

characterized by the viscosity ςi. Following the approach developed in Section 4.4.3, we are

interested in the asymptotic behavior of the homogenized creep properties at large times. An
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application of the final value theorem [134] to Mi(t) yields:

lim
s→0+

M̂i(s) = ς i (5.48)

Eq. (5.47) is then rewritten in the form:

lim
s→0+

N∑

i=1

1

1 +
1

2
(ςi/M̂hom(s)− 1)

= lim
s→0+

N∑

i=1

ςi/M̂hom(s)

1 +
1

2
(ςi/M̂hom(s)− 1)

(5.49)

and finally:
N∑

i=1

1

1 +
1

2

(
ςi/ζ

hom − 1
) =

N∑

i=1

ςi/ς
hom

1 +
1

2
(ςi/ςhom − 1)

(5.50)

where:

lim
s→0+

M̂hom(s) = ςhom (5.51)

The above equation enables us to conclude (see Section 4.4.3) that, after a transient phase,

the homogenized contact creep behavior is governed by a Maxwell unit of viscosity ςhom which

is estimated from the set of measured {ςi}i=1..N by solving Equation (5.50).

Logarithmic Creep

Consider then a logarithmic creep for each indented phase i = 1,N , for which the contact creep

compliance reads (see Eq. (3.53)):

Li(t) =
1

Mi
+

ln(t/τ i + 1)

Ci
(5.52)

To simplify the derivation, we assume that τ i = τ and Ci/Mi = α for all indented phases so

that the full contact creep behavior of phase i = 1, N is determined by the creep modulus

Ci only. Considering these assumptions in (5.52), the Laplace transform of the contact creep

compliance of phase i reads:

L̂i(s) =
α− esτ Ei(−sτ)

sCi
(5.53)
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where Ei is the exponential integral. Then, a substitution of Eq. (5.53) into Eq. (5.47) yields:

N∑

i=1

1

1 +
1

2
(L̂hom(s)sCi/(α− esτ Ei(−sτ))− 1)

=
N∑

i=1

L̂hom(s)sCi/(α− esτ Ei(−sτ)

1 +
1

2
(L̂hom(s)sCi/(α− esτ Ei(−sτ)− 1)

(5.54)

for which the solution is readily found to be:

L̂hom(s) =
α− esτ Ei(−sτ)

sChom
(5.55)

where Chom is given by:

N∑

i=1

1

1 +
1

2
(Ci/Chom − 1)

=
N∑

i=1

Ci/C
hom

1 +
1

2
(Ci/Chom − 1)

(5.56)

From a comparison of Eqs. (5.53) and (5.55), we conclude that the contact creep behavior of the

composite material is also logarithmic with regard to time. The magnitude of the logarithmic

creep Chom is estimated from the set of measured {Ci}i=1..N by solving Eq. (5.56).

5.4 Chapter Summary

The aim of indentation analysis is to link indentation data to meaningful mechanical properties

of the indented material system. The tools of indentation analysis of multiphase materials

presented in this Chapter achieve just this:

1. The statistical indentation technique (‘grid indentation’, Section 5.2) pioneered by Con-

stantinides et al. and refined in this Chapter allows the extraction of phase properties of

multiphase materials by careful monitoring of the indentation depth w.r.t. the charac-

teristic size of the heterogeneity, h/D < 1/10. In particular, the proposed automatized

deconvolution technique, based on cumulative distribution functions (instead of probabil-

ity density functions) of the phase properties, enhances the repeatability of the technique.

2. The proposed self-consistent indentation technique (Section 5.3) translates the hetero-

geneity of the multiphase material from the scale of individual phases, h/D < 1/10, to
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the composite scale h/D ≫ 1. The derived self-consistent homogenization relations be-

tween grid indentation data and composite indentation properties provide a means to

evaluate the influence of the constituent behavior on the composite behavior. Further-

more, a comparison between the analytical predictions and actual indentation test results

performed at the composite scale, h/D ≫ 1, may allow the identification of scale or size

effects. In fact, the homogenization approach employed here is based on continuum mi-

cromechanics, which, like all continuum theories, does not capture scale effects. Hence, a

confrontation of predicted and experimental indentation response at the composite scale

allows one either to validate the relevance of the continuum theory (and thus the ab-

sence of scale effects) or to assess potential scale effects on stiffness, strength and viscous

properties.

The statistical tools developed in this Chapter thus complement the tools of continuum

indentation analysis presented in Part II and those of the micromechanics-based indentation

analysis of heterogeneous solids presented in Chapter 4. We now have a wealth of methods at our

disposal that allow us to characterize by means of indentation a material from the microscale to

the macroscale. We are now ready to employ these tools for the indentation analysis of cement

pastes, aiming at identifying the link between the multiphase composition, the microstructure

and the elastic, strength and creep performance.
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Part IV

Indentation Analysis of

Cementitious Materials: Principles

and Validation
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Chapter 6

Multi-Scale Thought-Model of

Microstructure

This fourth Part is devoted to the application of the tools of indentation analysis to cementitious

materials. This Chapter introduces a multiscale thought-model of the microstructure of cement-

based materials, which will form much of the backbone of this experimental investigation. The

goal of introducing the multiscale thought-model in this Chapter is to zoom in, top-down, from

the macroscale to the atomic scale, on the current state of knowledge about microstructure and

properties of Calcium-Silicate-Hydrates (C-S-H), the hydraulic binding phase of all cement-

based materials.

6.1 Introduction

Concrete is a fairly complex, heterogeneous and multiphase composite material, with a random

microstructure at different length scales ranging from the nanometer scale to the macroscopic

decimeter scale. The most prominent heterogeneity of cement-based materials affecting strength

and durability properties is the porosity. However the porosity of cement-based materials does

not occur at a single scale, but manifests itself at multiple scales from the nanometer to the

millimeter level. An analysis of the microstructure, therefore, is suitably done by considering

characteristic scales of heterogeneity, and thus the complex microstructure must be broken down

to different scales. This division of scales is sketched in Figure 6-1 in the form of a four-level
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Figure 6-1: Multiscale structure thought model of concrete (adapted from [184]). Image credits:
level 0 from [154], level I from [135], level II from [128] and level III from [106]

microstructure [56].

6.2 Level III: Macroscale of Concrete

6.2.1 Aggregates

Concrete is a mix of cement paste with aggregates. Aggregates occupy 60% to 75% of the

concrete volume, or, equivalently, 70% to 85% by mass [106]. Aggregates are divided into fine

aggregates and coarse aggregates. Fine aggregates, mostly sand, have a characteristic size in the

millimeter range. Coarse aggregates, mostly gravels and crushed stone, have a characteristic

size in the centimeter range. At this macroscale of engineering application, concrete exhibits

a distinct matrix-inclusion morphology, wherein the aggregates are the inclusions embedded in
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1 cm

Figure 6-2: Surface of a concrete with macroporosity (from [189]). A macropore with a 2 mm
diameter is marked with the arrow.

the cement paste matrix (Fig. 6-1, Level III).

6.2.2 Macroporosity

At the macroscale macropores of a characteristic size in the millimeter range and above may

be present. These macropores often result from a lack of fluidity of the fresh material and

can be avoided by an appropriate treatment of the fresh material (vibration, fluid admixtures,

etc.). Macropores increase the rate of transport phenomena and are therefore detrimental to

the durability of concrete.

6.3 Level II: Microscale of Cement Paste

The cement paste is formed by the hydration of cement clinker and water and is composed of

hydration phases, residual clinker phases, and, for high water-to-cement ratio (w/c) materials,

capillary porosity. The characteristic size of the residual clinker phases due to incomplete

hydration is on the order of the micron to dozens of microns, depending on the w/c ratio.

The characteristic size of the hydration phases is on the order of a single micron. The hydrated
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Usual notation
Cement chemistry

convention

CaO C
SiO2 S
Al2O3 A
Fe2O3 F
SO3 S
H2O H

Table 6.1: Cement chemistry notation.

Name Notation Wt% M/GPa H/GPa

Alite C3S 60-65 135± 7 8.7± 0.5

Belite C2S 20-25 130± 20 8± 1.0

Tricalcium aluminate C3A 8-12 145± 10 10.8± 0.7

Ferroaluminate C4AF 8-10 125± 25 9.5± 1.4

Table 6.2: Typical composition of a Portland cement (from [38]) and characteristic indentation
modulus and hardness values of clinker phases [193]).

cement phase exhibits a distinct matrix-inclusion morphology, in which the unhydrated clinkers

are embedded in a matrix of multiple hydration products, namely Calcium Silicate Hydrates

(C-S-H), Portlandite (CH), calcium aluminates (AFm) and ettringite (AFt). These multiphase

components of the cement paste are reviewed next. In doing so, it is convenient to employ

cement chemistry notation as introduced in Table 6.1.

6.3.1 Clinker Phases

Clinker in Portland cement is made up of tricalcium silicate C3S (also called ‘alite’), dicalcium

silicate C2S (also called ‘belite’), tricalcium aluminate C3A, and tetracalcium aluminum ferrite

C4AF (also called ‘ferroaluminate’). A typical composition is given in Table 6.2 together with

indentation properties obtained by nanoindentation testing of pure clinker phases [193]. The

density of the clinker phases is ρCL = 3.15 g/cm3.

In the presence of water clinker dissolves. From a theoretical point of view, cement chemistry

calculations (based on Bogues formula) predict a complete dissolution of clinker phases in pure

form for water-to-cement ratios w/c (the usual name for the ratio of the mass of added water

to the mass of clinker composing the cement) equal or greater than w/c ≃ 0.25. On the other

hand, experimental study of the hydration reactions in real cement-based materials suggests
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a complete hydration for w/c ≥ 0.38 [151] if there is adequate supply of water during curing.

This critical water-cement ratio required for complete hydration can increase to w/c = 0.44 if

the paste is cured under sealed conditions [151]. The dissolution is initially fast but slows down

dramatically over time, and the total dissolution of clinker may occur over weeks, months or even

years, as long as there is water present in the pore space of the hardening material. Motivated

by chemistry terminology, we refer to stoichiometric conditions when the water present in

the mix is exactly the amount required for a complete dissolution, w/c ≃ 0.4. Accordingly,

w/c < 0.4 will be considered as sub-stoichiometric conditions, for which it can be expected that

unhydrated clinker is present at all times in the hydrated cement paste.

6.3.2 Calcium Aluminates and Ettringite

Calcium aluminates (noted ‘AFm’ by Taylor [177]) and ettringite (noted ‘AFt’ by Taylor [177])

result from the hydration of tricalcium aluminates C3A and ferroaluminates C4AF. AFm form

from C3A according to [177]:1

2 C3A + 27 H −→ C4AH19 + C2AH8

2 C3A + 21 H −→ C4AH13+ C2AH8

C3A + CH + 12H −→ C4AH13

(6.1)

In the presence of sulfates, calcium aluminates also produce ettringite AFm:

C3A + 3 CSH + 26H −→ C6AS3H32 (6.2)

Once the sulfates are consumed, ettringite becomes an AFm phase:

2 C3A + C6AS3H32 + H −→ 3C4AS3H12 (6.3)

Ettringite and calcium aluminates in the hardened material have a characteristic size on

the order of the micrometer and occupy together roughly 15− 20% of the volume of hydration

products [125]. Ettringite often has a distinctive needle-like shape (Fig. 6-3).

1The following set of reactions can be rewritten for C4AF by replacing aluminum by iron.
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50 µm

Figure 6-3: Ettringite deposit in void (from [106]).

6.3.3 C-S-H Matrix and Portlandite

Calcium silicate hydrates (C-S-H) and Portlandite (CH) are the main products of hydration.

C-S-H and CH occupy respectively 50−60% and 20−35% of the volume of hydration products

[125]. They result from the hydration of C3S and C2S, according to the following reactions:2

2 C3S + 10.6 H −→ C3.4S2H8 + 2.6 CH

2 C2S + 8.6 H −→ C3.4S2H8 + 0.6 CH
(6.4)

Portlandite (CH) is a crystal with definite stoichiometry and a distinctive hexagonal morphol-

ogy. Depending on the environment, the characteristic size of the crystal can vary from one

micrometer to a hundred micrometers [125]. CH density and mechanical properties are rela-

tively well known [56]:

ρCH = 2.24 g/cm3; MCH = 38± 5 GPa;HCH = 1.2± 0.4 GPa (6.5)

2The reaction formulas are approximate, since the stoichiometry of C-S-H is not well-defined. Slightly different
formulas are proposed in other references (e.g., in [125]).
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In contrast, and in spite of decades of intensive research, many questions regarding the

stoichiometry, density and microstructure of C-S-H are still unresolved. This is likely due to

the fact that C-S-H at the microscale of the cement paste is not a homogeneous matrix phase,

but a composite material composed of different C-S-H phases which are structurally distinct but

compositionally similar; this justifies considering the microscale of C-S-H phases as a distinct

material scale of cement-based materials.

Capillary Pores

Capillary pores of a characteristic size in the micrometer range are present at the scale of the

cement paste due to the so-called Le-Chatelier contraction and/or an excess of water in the mix:

The Le-Chatelier contraction in cement-based material is due to the fact that the molar volume

of the hydration products is significantly smaller than the molar volume of the initial water and

unhydrated clinker. In the hydration of pure clinker phases, the molar volume is reduced by

roughly 10% [38] (but it is somewhat smaller for real Portland cements). The resulting voids

manifest themselves at the micron scale in the form of capillary pores.

An excess of water beyond the stoichiometric water limit w/c ≃ 0.4 required for complete

hydration also results in capillary pores saturated by the water not consumed in the hydration

reactions. The remaining water prevents the solid hydration products from filling the space, a

phenomenon which manifests itself at the micron scale in form of capillary pores.

6.4 Level I: C-S-H Microstructure

C-S-H microstructure refers to the morphology and assembly of C-S-H solid particles, which

have been the focus of intensive research for more than sixty years. Most contributions to the

C-S-H microstructure can be traced back to the groundbreaking works of Powers and colleagues

[151], who by correlating macroscopic strength [194] and stiffness data [88] with physical data

of a large range of materials prepared at different w/c-ratios recognized early on the critical

role of the C-S-H microstructure, morphology and gel porosity on the macroscopic mechanical

behavior (see Fig. 6-4).
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Figure 6-4: Cube strength versus ‘capillary’ porosity (capillary porosity includes here pores
greater than about 1 nm) (from [194]).

6.4.1 C-S-H Morphology

The morphology of C-S-H is not uniform in the cement. In fact, advanced microscopy tech-

niques provide evidence that there is a difference in the texture of the C-S-H close to the clinker

grain and further from the grain (see, e.g., Fig. 6-5). Due to their location, those phases

with different textures have been coined ‘Inner Product C-S-H’ and ‘Outer Product C-S-H’,

respectively. But the issue of C-S-H morphology is far from being settled. From atomic force

microscope investigations (AFM) [135] (Fig. 6-6) to small angle neutron scattering (SANS)

[2] to transmission electron microscopy (TEM) [154][81] (Fig. 6-7), a variety of imaging tech-

niques have provided ample evidence that the C-S-H matrix is composed of elementary C-S-H

nanoparticles whose smallest dimension is on the order of 5 nm; however, depending on the type

and mode of observation, the opinions differ as regards to other dimensions. To name a few

disagreements: Based on AFM measurements, Nonat [135] suggests a brick-type morphology

of the nanoparticle (lamellae) of dimension 60 × 30 × 5 nm3. From density, composition and

surface area measurements, Jennings [97][179][98] postulates a globular C-S-H particle mor-

phology of characteristic diameter 5.6 nm. This amorphous morphology is consistent with the
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absence of any long-range order in C-S-H [177]. These globular particles agglomerate to form

a Low Density (LD) and a High Density (HD) C-S-H ‘gel’, reminiscent of the outer and inner

products, respectively. Based on TEM imaging of C3S and C2S pastes, Richardson [154] at-

tributes the globular particle morphology to the so-called Inner Product (Ip) C-S-H (which is

4—8 nm in size in pastes hydrated at 20◦C but smaller at elevated temperatures, 3—4 nm) which

is distinct from the fibrillar morphology he assigns to the Outer Product (Op) C-S-H, which

consists of aggregations of long thin particles that are about 3 nm in their smallest dimension

and of variable length, ranging from a few nanometers to many tens of nanometers (Fig. 6-5).

6.4.2 Gel Porosity

The space not occupied by solid particles forms the gel porosity, which is fundamental for the

understanding of the link between C-S-H microstructure and mechanical properties (see, e.g.,

Fig. 6-4). Powers considered the C-S-H gel porosity (gel pore volume over total gel volume)

to be material invariant and equal to ϕ0 = 0.28 independent of mix proportions, hydration

degree, C-S-H morphology, etc. The application of advanced microscopy, X-ray mapping and

Neutron scattering techniques to cement-based materials readily revealed that the assumption

of a constant gel porosity could not be but an oversimplification of the highly heterogeneous

microstructure of cement-based materials, overlooking the particular organizational feature of

cement hydration products in highly dense packed ‘inner’ products (or HD C-S-H), and looser

packed ‘outer’ products (or LD C-S-H). A brief review of microstructural models, in chronolog-

ical order, is due.

Powers-and-Brownyard 1948 Model

Powers and Brownyard [151] proposed a model to describe the colloidal structure of C-S-H

which is a benchmark in the cement community because it provides quantitative estimates

while remaining extremely simple. Calibrated with a combination of water sorption and pore

volume data, the model predicts a porosity of the C-S-H phase of 28% and an interlayer space

(the space between neighboring sheets of C-S-H) of 1.8 nm. The empirical model also provides

estimates for the volumetric fractions of different phases present in hardened cement paste [151]:
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Figure 6-5: Evidence of the existence of two types of C-S-H (from [154]). (a) TEM micrograph
showing both inner product C-S-H and outer product C-S-H present in a hardened C3S paste.
The white arrows indicate the boundary between the two types of C-S-H, with the inner product
at the top left. (b) Enlargement of a region of inner product C-S-H. (c) Enlargement of a region
of outer product C-S-H.
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100 nm

a)

b)

Figure 6-6: Evidence of the particulate nature of C-S-H. (a) AFM image of the surface of a
cement paste cast against a calcite single crystal, revealing particles with a mean size of 30-50
nm (from [135]). (b) TEM image of high performance concrete showing particles ranging in
size from 20 to 60 nm (from [81]).
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5 nm

Figure 6-7: HRTM picture of a nanocrystalline zone of C-S-H (from [81]).

Vcs = 0.20 (1− p) ξ Chemical Shrinkage

Vcw = p− 1.32 (1− p) ξ Capillary Water

Vgw = 0.60 (1− p) ξ Gel Water

Vgs = 1.52 (1− p) ξ Gel Solid

Vcl = (1− p) (1− ξ) Unhydrated clinker

(6.6)

where ξ is the hydration degree, defined as the mass fraction (or volume fraction) of clinker

which has reacted:

ξ =
(WCL)reacted
(WCL)initial

(6.7)

p is the initial porosity, i.e., the volume which water occupies in the fresh mix:

p =
w/c

w/c+ ρw/ρc
(6.8)

where ρc = 3.15 g/cm3 and ρw = 1.0 g/cm3 are the cement and water density, respectively.

One verifies that the sum of the volume fractions equals one (Vcs + Vcw + Vgw + Vgs + Vcl = 1),

192



Figure 6-8: Feldman and Sereda model for C-S-H (from [74]).

but should not loose sight of the fact that the actual volume normalized by the initial volume,

due to shrinkage, is 1− Vcs. We thus verify from Eqs. (6.6) that the gel porosity in Powers’s

model is the same irrespective of the hydration state of the material:

ϕ0 =
Vgw

Vgs + Vgw
= 0.28 (6.9)

Feldman-Sereda Model

Feldman and Sereda [74] proposed a morphological modification to the Powers-Brownyard

model, suggesting that C-S-H sheets stack in groups a few layers thick (Fig. 6-8). These

ordered groups organize themselves in a disordered manner. The pore space associated with

this model varies locally, the lower bound being the interlayer space. The Feldman-Sereda

model assumes an interlayer space varying between 0.5 and 2.5 nm. The model is more quali-

tative rather than quantitative and may eventually explain why C-S-H, which is amorphous as

a whole, can exhibit order at the nanometer scale (see, e.g., Fig. 6-7).

193



The Jennings Model

The quantitative consideration of morphology of the C-S-H phases in the form of a concise

microstructural model of the gel microstructure is due to Jennings and coworkers [100] [101]

[179] [98] [99], who recognized that outer and inner products are two structurally distinct but

compositionally similar C-S-H phases; that is, amorphous nanoparticles of 5 nm characteristic

size packed into two characteristic forms, a Low Density (LD) C-S-H phase and a High Density

(HD) C-S-H phase, can be associated with outer and inner products, respectively.

The model development was motivated by an experimental inconsistency of surface area

measurements: Samples with higher surface areas (measured by nitrogen) exhibit a lower gel

porosity (measured by nitrogen as well) [179] (see Fig. 6-9). If C-S-H had a single porosity

only, one would expect the opposite. One way to resolve this inconsistency is to consider several

C-S-H phases of different densities. In Jennings model, there are two phases [100] [101]: The LD

C-S-H phase and the HD C-S-H phase. The compatibility of those phases with the concept of

inner and outer products remains an argument in favor of its existential justification, however,

a model with more than two C-S-H phases could have equally well resolved the experimental

inconsistency.

The original Jennings model is a two-scale porosity model (Fig. 6-10): An elementary C-

S-H solid building forms a ‘globule’ (or a C-S-H particle), reminiscent of the packing of C-S-H

sheets in the Feldman-Sereda Model. These globules pack into two different C-S-H phases

which differ solely in the packing density of the C-S-H globules. The parameters of the model

(density, porosity, size) were fit to an extensive set of density, composition and surface area

measurements. The results of this calibration are given in Table 6.3. The globules have a

characteristic size of about 5 nm, an intra-globular nanoporosity of φG = 18%, and two inter-

globular porosities which can be viewed as the gel porosities: φLD = 37% for the LD C-S-H

and φHD = 24% for the HD C-S-H. Constantinides and Ulm [58] noted that the corresponding

packing densities (‘one minus porosity’) of LD C-S-H and HD C-S-H come remarkably close

to limit packing densities of spheres: Namely the random close-packed limit (RCP [96]) or

maximally random jammed state (MRJ [69]) of η ≈ 0.64 for the LD C-S-H phase and the

ordered face-centered cubic (fcc) or hexagonal close-packed (hcp) packing of η = π/
√

18 ≈ 0.74

[166] for the HD C-S-H phase. In contrast, far from being constant, the gel porosity of the
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Figure 6-9: Measured surface areas and pore volumes for different cementitious materials
(adapted from [98]).

C-S-H phase is recognized to be dependent on the volume proportions, fLD and fHD, which

the two phases, LD C-S-H and HD C-S-H, respectively, occupy in the C-S-H matrix:

ϕ0 = 1− (0.64× fLD + 0.74× fHD) (6.10)

with fLD + fHD = 1. Thus considering the existence of two structurally distinct but compo-

sitionally similar C-S-H phases introduces a new degree of freedom into the description of the

microstructure, which is that of the differing volume fractions of the two phases. Based on

multiple linear regression of nitrogen adsorption data on D-dried samples, the Jennings model

provides the following empirical relation for the ratio of the mass of LD—C-S-H to the total

mass of C-S-H (Fig. 6-11):

Mr = 3.017
w

c
ξ − 1.347ξ + 0.538 (6.11)
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Figure 6-10: Jenning’s model of C-S-H (adapted from [57]).
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Figure 6-11: Mass ratio of Low Density (LD) C-S-H to total C-S-H (from [179]).

6.4.3 Mechanical Phase Properties and Granular Morphology

The existence and mechanical importance of these phases have been confirmed by statistical

nanoindentation [59] [56] [184]: LD C-S-H and HD C-S-H were found to be uniquely charac-

terized by a set of material properties (Tab. 6.3) which do not depend on mix proportions,

type of cement, etc. Instead, they are intrinsic phase properties of two structurally distinct but

compositionally similar C-S-H phases.

The link between these mechanical C-S-H phase properties and C-S-H packing density has

been established, showing that the C-S-H phases exhibit a unique nanogranular morphology

[58] [64] [102]. This is shown in Figure 6-12, in which values of indentation modulus and

indentation hardness of the Low-Density (or outer products) and the High Density (or inner

products) C-S-H structures obtained from statistical nanoindentation technique [58] are plotted

versus C-S-H values of packing density obtained from mass density measurements, small-angle

neutron scattering (SANS) and X-ray scattering data [98] [102] [3]. The almost linear scaling of

the elastic properties with the packing density hints towards a granular morphology of the C-S-H

particles with a percolation threshold on the order of η0 = 1/2, reminiscent of the self-consistent

theory with perfect sphericity (see Section 4.2.4). Although C-S-H particles or stacked layers
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Density, g/cm Porosity, % Property
pores full pores empty M , GPa H, GPa

Basic building block 2.8(a) N.A. N.A. N.A.
Globules 2.48 2.30 17.9(a) 61.2(c) 1.78(c)

LD C-S-H 1.93 1.44 37.4(b) 18.2± 4.2 0.45± 0.14

HD C-S-H 2.13 1.75 23.9(b) 29.1± 4.0 0.83± 0.18

Table 6.3: Computed density and porosity of the C-S-H basic building blocks, globules and
phases, according to Jennings [97].
(a) The value for the density of the basic building block was recently updated by Allen, Jennings et al. to 2,604
kg.m−3

± 22% [3], from which value the structural porosity becomes 11.7 %
(b) The calculated porosity is the porosity with respect to the gobule and therefore does not include the structural
porosity.
(c) obtained by linear extrapolation to zero porosity [58].

are unlikely to be spherical, given their relatively high packing density any possible asphericity

of the C-S-H particle has a negligible effect on the elastic properties of the LD C-S-H and HD

C-S-H (see Section 4.2.5).

6.5 Level 0: C-S-H Solid

6.5.1 Atomistic Structure

The stoichiometry of C-S-H is ill-defined and the dashes in ‘C-S-H’ are here to remind the

reader that the main constituents (C, S, and H) are known, but that their stoichiometry is not.

To make the comparison between different compositions, the Ca—over—Si mass ratio (called

the ‘Ca/Si ratio’) is a handy parameter, as it varies depending on cement composition [177].

Furthermore, X-ray microanalysis (scanning electron microscopy SEM or electron-probe micro-

analysis EPMA) shows that the Ca/Si ratio varies locally within a given sample [178]. Usually,

the Ca/Si ratio is comprised between 1.5 and 2 [125] with an average of around 1.75, but values

as high 2.3 and as low as 1.2 have been reported (Fig. 6-13).

It is generally agreed that the C-S-H solid phase has a sheet-like molecular structure. The

two-dimensional structure of this C-S-H sheet is considered to be a double plane of Ca2+ ions

6- or 7- coordinated by central O2− ions [145]. Silica chains are attached on either side. The

sheets are stacked separated by water molecules, Ca2+ ions and possibly OH− ions. Still, the

exact structure of C-S-H is not known.
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Figure 6-12: Linear extrapolation of (a) measured indentaton moduli and (b) measured in-
dentation hardnesses of LD C-S-H and HD C-S-H to the solid state (η → 1). The packing
densities of LD C-S-H and HD C-S-H were obtained separately from specific surface area mea-
surements (adapted from [58]). Figure a) also displays indentation modulus—packing density
scaling relations for different particle aspect ratios.
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Figure 6-13: Ca/Si ratio frequency histogram in Portland cement pastes, measured by 493 TEM
microanalyses of C-S-H free of admixture with other phases (from [153]).

There exists a resemblance in the crystal chemistry and the X-ray diffraction patterns be-

tween C-S-H and two naturally occurring minerals, Tobermorite and Jennite [177]; for which

reason Tobermorite and Jennite have been proposed as natural analogs of the C-S-H molecular

structure. Tobermorite exists in three different forms distinguished by the interlayer spacings:

9 Å, 11 Å and 14 Å. Two structures have been proposed for the 11 Å tobermorite (Fig. 6-14),

Hamid’s structure and Merlino’s structure. In Hamid’s structure, the repeating units along the

chains are called ‘dreierketten’, with two pairing tetrahedra linked to the CaO polyhedra layer

[84]. The interlayer space is occupied by water molecules only, and no chemical bond exists

between two adjacent sheets. In contrast, in Merlino’s structure adjacent sheets are linked by

bridging covalent Si-O-Si bonds [126].

Making an analogy between real C-S-H and tobermorite should nevertheless be considered

with care since the analogy may be incomplete [177]. Indeed, C-S-H in ordinary Portland

cement has a Ca/Si ratio of 1.75 on average, whereas tobermorite has a Ca/Si ratio of 0.67,

0.83 or 1 for Hamid’s structure and 0.66 or 0.75 for Merlino’s structure. At such a large Ca/Si

ratio, the structure of C-S-H is controversial. Three main models have been proposed for this

structure. These models are either a solid solution with Portlandite, a nanophase mixture

of tobermorite- and jennite-related units, or a defective tobermorite further modified by the

replacement of SiO2 units by Ca(OH)2 [145].
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Figure 6-14: Proposed structures for 11 Å tobermorite: (a) Hamid’s structure (from [145]) (b)
Merlino’s structure (from [126]).
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The density of the C-S-H solid phase depends on the relative humidity. To enable comparison

and remove all evaporable water, C-S-H is often ‘D-dried’, i.e., heated at 105◦C in an atmosphere

free of CO2. By doing so, all water present in the gel pores is removed, although some structural

water of the C-S-H solid may also be removed [177]. Density measurements for D-dry C-S-H

solid phase range from 2,440 kg/m3 [151] to 2,860 kg/m3 [28]. Allen et al. [3] showed recently

that D-drying indeed removed part of the structural water. Without D-drying the samples, and

from a combination of small-angle neutron and X-ray scattering data, they measured a density

ρ = 2, 604 kg/m3 of the C-S-H solid phase. They also measured a tentative average composition

of C-S-H as:

C− S−H = C1.7S2H1.8 (6.12)

where we remind ourselves that C, S and H in cement chemistry stand for CaO, SiO2 and H20,

respectively (Tab. 6.1).

6.5.2 Mechanical Properties by Molecular Dynamics (MD) Simulations

At present, no direct measurements of the elastic and strength properties of the C-S-H solid

phase exist. This is due to the fact that C-S-H solid phase cannot be recapitulated in a bulk solid

form suitable for mechanical testing. Most of our knowledge comes from atomistic simulations

of tobermorite, the natural analog of C-S-H, and from extrapolation of nanoindentation results

of C-S-H phases containing gel porosity to a zero porosity.

From energy minimization at 0 K, Pellenq and Van Damme [145] reported the average

Young’s modulus of Hamid’s structure (Ca/Si = 1) of 11 Å tobermorite to be Es = 57.1 GPa,

which translates with an assumed Poisson’s ratio of 0.2 − 0.25 into an equivalent indentation

modulus of

ms =
Es

1− ν2s
= 59.5− 60.9 GPa (6.13)

This value for the hydration products is significantly lower than the reported stiffness values

of the hydration reactants, i.e., clinker phases (see Table 6.2). The order of magnitude of this

value was recently confirmed by Shahsavari et al. [163] for Merlino’s structure of the 11 Å
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tobermorite. From the full elasticity tensor determined from MD-simulations,

Cs/GPa =




Cs11 = 82.8 Cs12 = 35.5 Cs13 = 25.2 0 0 −0.7

Cs22 = 113.4 Cs23 = 22.0 0 0 −8.2

Cs33 = 42.9 0 0 0.9

2Cs66 = 21.0 −0.1 0

2Cs44 = 16.7 0

2Cs44 = 36.9




(6.14)

one can calculate the quasi-isotropic bulk modulus and shear modulus using the Voigt-Reuss-

Hill average3 and consequently, by means of Eq. (2.20), the quasi-isotropic solid indentation

modulus and the Poisson’s ratio of the C-S-H solid phase:

ms = 63.5 GPa

νs = 0.25
(6.20)

6.5.3 Asymptotic Nanoindentation Properties

Constantinides and Ulm [58] combined nanoindentation measurements of LD C-S-H and HD C-

S-H properties with porosity estimates obtained from specific surface area (SSA) measurements

by Jennings [97] (Tab. 6.3) to correct for the effect of porosity of the C-S-H solid phase. The

extrapolation shown in Figure 6-12 gives a solid indentation modulus of ms = 61.2 GPa, which

compares fairly well with the results obtained from MD-simulations.

3As a reminder, the Voigt-Reuss-Hill average is the average of the quasi-isotropic bulk modulus and shear
modulus of the Voigt and Reuss bounds (see e.g. [4]):

KV =
1

9
(2Cs11 + C

s
33) +

2

9
(Cs12 + 2C

s
13) (6.15)

GV =
1

15
(2Cs11 + C

s
13)−

1

15
(Cs12 + 2C

s
13) +

1

5
(2Cs44 + C

s
66) (6.16)

KR =
1

A (Cs11 + C
s
12 + 2C

s
33 − 4C

s
13)

(6.17)

GR =
15

2A (2 (Cs11 +C
s
12) + 4C

s
13 + C

s
33) + 6 (1/C

s
44 + 1/C

s
66)

(6.18)

KV RH =
1

2
(KV +KR) ; GV RH =

1

2
(GV +GR) (6.19)
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There is thus some strong evidence, supported by both atomistic simulations and nanoin-

dentation tests, that a characteristic value for the C-S-H solid elasticity property is on the order

of ms = 59− 65 GPa.

6.6 Chapter Summary

The goal of introducing the multiscale thought-model in this Chapter was to zoom in, top-down,

from the macroscale to the atomic scale on the current state of knowledge about the microstruc-

ture and properties of Calcium-Silicate-Hydrates (C-S-H). While it is generally agreed that

C-S-H has a layered structure (i.e., is made up of stacked C-S-H sheets) which resembles that

of tobermorite and jennite with many imperfections and irregularities [145], the exact atomic

structure of C-S-H is still beyond the current knowledge horizon. There is some evidence that

the elastic stiffness of the elementary C-S-H particle is on the order of ms = 59− 65 GPa, but

strength properties are still not known. Furthermore, while it is generally agreed that C-S-H

exists in different forms, there is no consensus with regard to the number and morphology of

these C-S-H phases. The Jennings model postulates the existence of two phases, low and high-

density, whose existence and importance have been confirmed by nanoindentation on regular

w/c materials [58]. These findings require confirmation in order to solidify this first link be-

tween microstructure and properties. In summary, the implementation of the materials science

paradigm, which is to link mix proportions and processing to microstructure and mechanical

performance, for cementitious materials remains a formidable challenge. The next Chapters will

address this challenge by applying the comprehensive tool box of indentation analysis developed

in Parts II and III to a large range of cement paste materials of different mix proportions.
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Chapter 7

Materials and Methods

The overall goal of the experimental investigation is to make the link between composition —

microstructure — and material performance of cement-based materials. As a prerequisite, this

materials and methods Chapter implements and validates, for cementitious materials, the tools

of indentation analysis developed in Part III. We start by presenting the investigated cement-

based materials and present the specific conditions of use, for cement-based materials, of the

statistical indentation techniques, including experimental indentation issues, sample prepara-

tion, choice of indentation depth; etc. This implementation and validation of the indentation

technique for cement-based materials will be used in the next Part to assess the microstruc-

ture of a large range of cement-based materials and phase properties of C-S-H phases, with a

particular focus on fundamental creep properties of C-S-H.

7.1 Materials

7.1.1 Mix Proportions

Forty-eight (48 ! ) cement paste materials of various mix proportions and processing conditions

were subjected to experimental investigation. All samples were prepared in the central research

laboratory (LCR) of Lafarge1 and delivered to M.I.T. in sealed conditions. The mix proportions

were chosen in order to generate a sufficiently large range of different compositions which

1Special thanks to Philippe Fonolossa and Blandine Albert.
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CaO SiO2 Al2O3 Fe2O3 SO3 LOI(a)

67.17 22.14 3.12 2.51 2.13 1.68

alite belite ferrite aluminate anhydrite gypsum calcite
71.1 15.00 7.00 1.2 1.4 1.2 1.8

Table 7.1: Composition of the Portland cement from Le Teil in mass percentage of each com-
ponent provided by the manufacturer (Lafarge). Components with a mass percentage smaller
than one percent are not included. (a) LOI: loss on ignition.

will be linked (by means of statistical indentation methods) to microstructure and mechanical

properties. The samples are identified by the following denomination which captures the main

compositional parameters varied in the experimental investigation:

type−w/c−A/c(A)−HT (7.1)

where:

• type stands for the type of hydraulic binder employed. The main body of investigated

materials was prepared with an alite (C3S) rich CEM I Portland cement from Le Teil (for

the composition, see Tab. 7.1), denoted by ‘PC’. But a few samples (8/48) were prepared

with pure C3S clinker phases, denominated by ‘C3S’. The rationale for considering both

types is to check whether microstructure and phase properties of the hydration phases

differ if prepared with pure clinker (C3S) or industrial clinker mixes (PC).

• w/c in mass percentage stands for the water-to-cement (mass) ratio, which was varied

in between w/c = 15% and w/c = 40%. Reminding ourselves that w/c ≃ 0.4 corre-

sponds (almost) to stoichiometric conditions (w/c = 0.38 according to the Powers model;

see Sections 6.3.1 ,6.3.3 and 6.4.2), the focus of the experimental campaign is on ce-

ment pastes prepared at sub-stoichiometric conditions. The rationale of investigating

sub-stoichiometric conditions is two-fold: (1) To avoid the presence of capillary pores

in the hydrated cement paste due to the presence of water in excess of the water re-

quired for ‘complete’ hydration; and thus (2) to focus the experimental investigation on

microstructure and properties of the C-S-H phases.

• A/c(A) stands for the admixture-to-cement (mass) ratio (in percent of weight), while (A)
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identifies the type of admixture. Two types of admixture are considered in this study:

— Silica Fumes (A = SF), in different mass percentages varying between SF/c = 8.75%

and SF/c = 32% of the weight of cement. The fineness of the silica fumes, obtained

from laser granulometry performed by Lafarge, is 2,550 cm2/g, yielding an average

particle diameter of 7.6 µm (for the granulometric curve, see Figure 7-1). Silica

fumes are usually much finer than this (average particle diameter on the order of 10

nm), and it is likely that the laser granulometry sampled silica flocks rather than

silica particles. The rationale of considering silica fumes is primarily to consider the

pozzolanic effect. Pozzolan contains reactive silica that reacts with Portlandite (CH)

to form C-S-H (see, e.g., [125]):

pozzolan + CH + H −→ C-S-H (7.2)

The investigation, therefore, begins by considering whether the hydrates formed by

the pozzolanic reaction have a different C-S-H microstructure and C-S-H phase prop-

erties than those encountered in normal cement paste materials without pozzolanic

additives.

— Calcareous (limestone) filler in amounts of CF/c = 10% and CF/c = 25% of the

weight of cement. Two types of calcareous filler were considered, A =CF1 and

A =CF2, which differ in their fineness only. The fineness of CF1, obtained from

laser granulometry, is 12,220 cm2/g, yielding an average particle diameter of 1.6 µm.

The fineness of CF2, also obtained from laser granulometry, is 7,320 cm2/g, yielding

an average particle diameter of 2.6 µm. According to the manufacturer, given the

grinding performed, CF2 was expected to be finer than CF1. Therefore, it may well

be that the laser granulometry of CF2 sampled flocks rather than particles. The

investigation of the effect of calcareous filler on the C-S-H microstructure begins by

inquiring whether calcareous fillers are reactive or chemically inert. Indeed, some

cement chemistry studies provide evidence that a fraction of calcite present in com-

mercially available cements is ‘reactive’, altering the mineralogy of hydrated cement

pastes without affecting the C-S-H mineralogical compositions [120]. Furthermore
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Figure 7-1: Granulometric curves of the cement, calcareous fillers (CF) and silica fumes (SF)
used in the nanoindentation experimental campaign [provided by Lafarge]. The curves for CF2
and SF are likely to have yielded the measurement of flocks.

some studies hint towards the provision of nucleation sites for the hydration products

[38],[86] that eventually accelerate the early-age hydration of Portland limestone ce-

ment. Indeed, during hydration, the hydration products need a support in order to

develop. In a cement with no admixture, this support is usually the clinker grain

itself. The hydration products then create a layer around the clinker grain, which

impedes further hydration. Added (non-reactive) admixtures may provide a new

support on which hydration products can precipitate and may therefore decrease the

layer of hydrates around the clinker grains and facilitate further hydration. This

type of mechanism, if it were to exist, would certainly alter the microstructure.

• HT = 0 or HT = 2 stands for the duration (in days) of a heat treatment (HT) applied two

days after casting of the sample. The HT consists of a 48-hour-long heating of the sample

at 90 ◦C, representative of an HT protocol employed in the field for advanced concrete

solutions. Whether such an HT affects the C-S-H phase properties or the microstructure

or both is the focus of the investigation of the effect of HT on the microstructure of C-S-H.
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Sample Sample Name w/c [%] SF/c(1) [%] CF/c(2) [%] Heat treatment

1 C3S-20-0-0 20 none
2 C3S-20-0-2 20 at 2 days
3 C3S-20-24(SF)-0 20 24 none
4 C3S-20-24(SF)-2 20 24 at 2 days
5 C3S-25-0-0 25 none
6 C3S-25-0-2 25 at 2 days
7 C3S-30-0-0 30 none
8 C3S-30-0-2 30 none
9 PC-15-0-0 15 none
10 PC-15-0-2 15 at 2 days
11 PC-20-0-0 20 none
12 PC-20-0-2 20 at 2 days
13 PC-20-8(SF)-0 20 none
14 PC-20-8(SF)-2 20 8.75 at 2 days
15 PC-20-10(CF1)-0 20 10 none
16 PC-20-10(CF2)-0 20 10 none
17 PC-20-17(SF)-2 20 17.5 at 2 days
18 PC-20-21(SF)-0 20 21.6 none
19 PC-20-24(SF)-0 20 24 none
20 PC-20-24(SF)-2 20 24 at 2 days
21 PC-20-25(CF1)-0 20 25 none
22 PC-20-25(CF2)-0 20 25 none
23 PC-20-32(SF)-2 20 32 at 2 days
24 PC-25-0-2 25 at 2 days

Table 7.2: List of tested cementitious materials: Part 1.
(1) Weight of silica fumes (SF), in percent of the weight of cement.
(2) Weight of calcareous filler (CF), in percent of the weight of cement.

7.1.2 Subsets of Samples

The 48 samples and their composition are listed in Table 7.2 and 7.3. In addition, Tables 7.4

and 7.5 categorize the samples in subsets that correspond to a specific point of inquiry.

7.2 Methods

The indentation analysis tools rely on the acquisition of the indentation load P and indentation

depth h over time. This acquisition, performed by high-precision equipment, can be sensitive to

the experimental setup and calibrations. This Section briefly describes indentation equipment,

calibration issues and potential sources of error.

209



Sample Sample Name w/c [%] SF/c(1) [%] CF/c(2) [%] Heat treatment

25 PC-30-0-0 30 none
26 PC-30-0-2 30 at 2 days
27 PC-30-8(SF)-0 30 8.75 none
28 PC-30-8(SF)-2 30 8.75 at 2 days
29 PC-30-10(CF1)-0 30 10 none
30 PC-30-10(CF2)-0 30 10 none
31 PC-30-17(SF)-0 30 17.5 none
32 PC-30-17(SF)-2 30 17.5 at 2 days
33 PC-30-21(SF)-0 30 21.6 none
34 PC-30-24(SF)-0 30 24 none
35 PC-30-24(SF)-2 30 24 at 2 days
36 PC-30-25(CF1)-0 30 25 none
37 PC-30-25(CF2)-0 30 25 none
38 PC-30-32(SF)-0 30 32 none
39 PC-30-32(SF)-2 30 32 at 2 days
40 PC-35-0-0 35 none
41 PC-35-0-2 35 at 2 days
42 PC-40-0-0 40 none
43 PC-40-8(SF)-0 40 8.7 none
44 PC-40-10(CF1)-0 40 10 none
45 PC-40-10(CF2)-0 40 10 none
46 PC-40-21(SF)-0 40 21.6 none
47 PC-40-25(CF1)-0 40 25 none
48 PC-40-25(CF2)-0 40 25 none

Table 7.3: List of tested cementitious materials: Part 2.
(1) Weight of silica fumes (SF), in percent of the weight of cement.
(2) Weight of calcareous filler (CF), in percent of the weight of cement.

C3S OPC OPC-HT
Reference Reference

1 C3S-20-0-0 PC-15-0-0 PC-15-0-2
2 C3S-20-0-2 PC-20-0-0 PC-20-0-2
3 C3S-20-24(SF)-0 PC-30-0-0 PC-25-0-2
4 C3S-20-24(SF)-2 PC-35-0-0 PC-30-0-2
5 C3S-25-0-0 PC-40-0-0 PC-35-0-2
6 C3S-25-0-2
7 C3S-30-0-0
8 C3S-30-0-2

Table 7.4: Subsets of tested materials. Part 1.
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OPC OPC-HT OPC OPC
Silica Fumes Silica Fumes Calc.Filler 1 Calc.Filler 2

1 PC-20-8(SF)-0 PC-20-8(SF)-2 PC-20-10(CF1)-0 PC-20-10(CF2)-0
2 PC-20-21(SF)-0 PC-20-17(SF)-2 PC-20-25(CF1)-0 PC-20-25(CF2)-0
3 PC-20-24(SF)-0 PC-20-24(SF)-2 PC-30-10(CF1)-0 PC-30-10(CF2)-0
4 PC-30-8(SF)-0 PC-20-32(SF)-2 PC-30-25(CF1)-0 PC-30-25(CF2)-0
5 PC-30-17(SF)-0 PC-30-8(SF)-2 PC-40-10(CF1)-0 PC-40-10(CF2)-0
6 PC-30-21(SF)-0 PC-30-17(SF)-2 PC-40-25(CF1)-0 PC-40-25(CF2)-0
7 PC-30-24(SF)-0 PC-30-24(SF)-2
8 PC-30-32(SF)-0 PC-30-32(SF)-2
9 PC-40-8(SF)-0
10 PC-40-21(SF)-0

Table 7.5: Subsets of tested materials. Part 1.

7.2.1 Indentation Equipment

Depending on their depth, indentations are referred to as microindentations (the deeper ones) or

as nanoindentations (the shallower ones). Nanoindentations will be performed with a nanohard-

ness tester from CSM Instruments SA (Peseux, Switzerland), while microindentations will be

performed with a MicroTest indenter of Micro Materials Ltd. (Wrexham, UK). The CSM In-

struments nano-hardness tester applies the load vertically to the specimen (Fig. 7-2b). The

Micro Materials MicroTest applies the load horizontally to the specimen, with the tip mounted

to a frictionless pivot (Fig. 7-2a). Nevertheless, the measurement heads of both indenters are

based on the same functional principle and are load-controlled. By passing a current through

a coil mechanically connected to the tip, the coil and a fixed permanent magnet attract each

other, which in return sets the indenter into motion and thus enables the application of a load

to the specimen, which is firmly clamped to the loading stage. The displacement of the indenter

with respect to the surface of the sample is continuously monitored and recorded via the change

in the voltage of a parallel plate capacitor. In this way P (t) and h(t) are obtained.

Table 7.6 provides the specifications of the two indenters. For both the load and the depth,

the noise is greater than the electronic resolution. Said otherwise, the limitation in the accuracy

of the measurement is not due to the electronics, but to mechanical vibrations. To reduce

mechanical noise, both devices are mechanically isolated from the surrounding environment by

an antivibration table.
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Figure 7-2: Schematics of the measurement head of (a) the Micro Materials Ltd. MicroTest
[127] and (b) the CSM Instruments SA Nano-hardness tester (courtesy from Dr. N. Randall).

Manufacturer Micro Materials Ltd. CSM Instruments SA
Indenter MicroTest Nano-hardness tester

Maximum loada, mN 20,000 300
Maximum deptha, µm 30 20
Depth resolutiona, nm 0.2-0.23 0.04
Load resolutiona, nN 15-20 40
Depth noiseb, nm 2.59±0.17 0.154±0.015
Load noiseb, µN ≤100 1.68±0.17

Table 7.6: Specifications of the Micro Materials MicroTest and CSM Instruments nano-hardness
tester. (a) Values provided by the manufacturers [127] [62]. (b) Measured values.
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7.2.2 Calibration Issues

To ensure that the recorded load and depth data as well as the subsequent indentation analysis

provides meaningful results which can be attributed to the indented material only, several

calibrations are performed prior to the indentation testing:

• Load versus applied current: The load applied to the specimen is proportional to the

current passed into the loading coil (see Section 7.2.1). The proportionality factor should

be calibrated, semiannually for the MicroMaterials MicroTest and every two years for

the CSM nano-hardness tester. For both indenters, the load calibration is performed

by hanging weights of precisely known mass on the indenter and measuring the current

necessary to bring the indenter back to its initial position.

• Depth versus change in capacitance: As described in Section 7.2.1, the displacement of the

indenter is measured by a change in capacitance in a parallel plate capacitor. The propor-

tionality factor between change in depth and change in capacitance must be calibrated,

weekly for the MicroMaterials MicroTest and every two years for the CSM nano-hardness

tester. For the MicroMaterials MicroTest, the depth calibration is performed by detecting

the surface of a fused silica sample with a spherical indenter, displacing the fused silica

sample toward the indenter by a given amount, and detecting the surface of the sample

again. For the CSM nano-hardness tester, the depth calibration is performed by indenting

a calibrated piezoelectric crystal with a spherical indenter.

• Shape area function of the indenter probe: The projected contact area versus contact

depth of the probe Ac(hc) must be known to ensure that the subsequent data analysis

provides meaningful results. An estimate of the projected area of contact Ac, required to

calculate indentation properties (see, e.g., the BASh formula (2.13)), is obtained with the

Oliver and Pharr method (see Section 2.3.2), which provides an estimate of the contact

depth hc; therefore the function Ac(hc) must be precisely determined. In the ideal case of

a perfectly sharp Berkovich indenter, the shape area function is known (see Section 2.2.1).

Practically, however, Berkovich indenters are not infinitely sharp, but somewhat blunt,

their radius of curvature usually being greater than 30 nm. Although this imperfection

will prove negligible for microindentation testing (for which the depth of the indentations
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is much greater than the radius of curvature of the tip), it must be accounted for in

nanoindentation testing, and Ac(hc) must be calibrated. Although the procedure is time-

consuming, Ac(hc) can be found by atomic force microscopy (AFM) or scanning electron

microscopy (SEM) imaging [55]; however Ac(hc) is usually found in an indirect manner

by performing indents at various depths on a material of known mechanical properties

(e.g., fused silica, which has an indentation modulus MFS = 72 GPa [62]). Ac is then

calculated with the BASh formula (2.13) and hc with the Oliver and Pharr method (see

Section 2.3.2). To the measured hc and Ac values is fit a function of the form:

Ac(hc) = C1h
2
c +C2hc +C3h

1/2
c +C4h

1/4
c + ... (7.3)

where C1 is usually fixed to the area-to-depth constant of the perfectly sharp indenter

(C1 = 24.58 for a Berkovich indenter, C1 = 2.60 for a Cube-corner indenter) and {Ci}i>1
capture the bluntness of the tip. For microindentation testing, the tip is considered to be

perfectly sharp, no calibration of the shape area function is required, and the ideal shape

area function is Ac(hc) = C1h
2
c .

• Compliance of the frame: In reaction to the load applied to the sample the frame of

the indenter is deformed. Therefore, the measured depth hmeas can be divided into two

contributions:

hmeas = h+ hframe (7.4)

where hframe captures the deformation of the frame, and h is the true indentation depth.

The depth to be reported in indentation testing is h, and therefore hframe must be dis-

carded. Modeling the frame as a spring of compliance Cf , Eq. (7.4) reads:

hmeas = h+ PCf (7.5)

where P is the applied load. An incorrect frame compliance Cf can have a non-negligible

effect on the reported P − h curve (see Figure 7-3). For the CSM nano-hardness tester,

due to the specific design of their measurement head the compliance of the frame is fixed,

Cf = 0.1 nm/mN and requires no calibration. For the MicroMaterials microindenter, Cf
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Figure 7-3: Effect of frame compliance on the P − h response (from [57]).

needs to be calibrated. Differentiating Eq. (7.5) at the onset of unloading and making

use of the BASh formula (2.13) yields:

1

Smeas
=

√
π

2M

1√
Ac

+Cf (7.6)

where Smeas = dP/dhmeas is the measured and uncorrected contact stiffness. A graph

of the measured 1/Smeas versus A−1/2c for a series of indentations performed at different

loads yields a straight line with the frame compliance as the intercept with the y-axis.

7.2.3 Ultrashallow Indentations

Once an indenter well calibrated, one can naturally wonder what minimum indentation depths

can reliably be measured. This minimum depth is limited by uncontrolled sources of error:

• Mechanical vibrations: As explained in Section 7.2.1 (see Table 7.6) mechanical vibrations

are the factor which limits the resolution in depth.

• ‘Thermal’ drift: Even on non creeping solids a change in depth under constant load is

observed due to instabilities of the apparatus. Although usually referred to as ‘thermal’,
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the drift of the apparatus may not be due only to thermal changes but also to drift of

the electronics themselves. To limit the thermal contribution of the drift indentation

instruments usually are equipped with an enclosure which blocks air currents. Even so,

a drift on the order of 0.1 nm/s is common. Drift is often accounted for by allowing for

hold periods at either the beginning or the end of a test, during which data points are

accumulated. A thermal drift correction is calculated and later applied to the whole data

set. But this correction, which is first-order in nature, is not fully satisfactory since there

is evidence that drift is not constant over the test.

• Inaccuracy of the contact point determination: During an indentation test the indenter

probe approaches the surface and, once the surface is detected, the load is increased

following a pre-defined load history. But determining when the contact between probe

and material surface occurs is not an easy task since for sharp probes, when contact

occurs, the area of contact between probe and material surface is theoretically infinitely

small! The CSM nano-hardness tester determines the contact point by monitoring the

rate of approach of the probe and interpreting a change in this rate as the occurrence of

contact. This method is sensitive to mechanical vibrations and, for our apparatus, can

yield an uncertainty on the contact point determination up to 2 nm. For us this is the

main limiting factor.

Nevertheless, indentations as shallow as a dozen or a few dozens of nanometers are reported

in the current literature (e.g., [27] [181]). At those scales, many identify (mostly on crystalline

materials, but also on polymers [181]) an indentation size effect. This indentation size effect

has been mostly studied for the indentation hardness of crystalline materials, for which a

clear increase with shallower depths is observed in the sub-micrometer range (see Figure 7-

4). Regarding the indentation modulus of crystalline materials, much fewer data are available,

although a slight increase also has been reported (see Figure 7-5). For non-crystalline materials,

such as polymers, several identified surface properties differ from the bulk properties (e.g., [181]),

but the trends in these differences remain unclear.

We recall that, due to the geometric self-similarity of the Berkovich probe, the indentation

depth is the only length scale in the problem, and the measured hardness should be independent
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Figure 7-4: Dependence of indentation hardness on indentation depth for copper (from [133]
and [123]).
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Figure 7-5: Dependence of indentation modulus on indentation depth for Ni3Al single crystals
(from [196]).
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Figure 7-6: Effect of the rounding of the tip on the indentation hardness measurement (Figure
a) obtained from numerical simulations on an elastic perfectly plastic material (from [41]). The
simulations were performed with a conical tip with radius of curvature R (Figure b).

of the indentation depth (see Section 2.2.3). A change in hardness at low indentation depths

implies that another length scale is involved. This length scale may be:

• Material related such as in the model proposed by Nix and Gao [133] and based on

geometrically necessary dislocations.

• The radius of curvature of the tip which at shallow depths becomes comparable to the

indentation depth. Chen and Li [41] showed that even for elastic perfectly plastic materials

the bluntness of the tip yields an increase in hardness at shallower depths (Figure 7-6).

For such a material, given that the BASh formula (2.13) is valid for any axisymmetric

indenter probe, no change in indentation modulus with the indentation depth is expected.
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7.3 Surface Preparation

The analytical derivations2 on which indentation analysis is based were developed by modeling

the indented material as an infinite half-space (see Part II). Therefore the surface of the indented

cement paste should ideally be flat. From a practical point of view, the samples need to be

prepared and polished so that the roughness of their surface is as small as possible. The RMS

roughness Rq (homogeneous to a length) of the sample must in fact be much smaller than the

maximum indentation depth hmax so that no new length scale is introduced in the indentation

problem. Finding out what polishing procedure yields the best surface (the one with the lowest

roughness) was referred to as an art [175]! The procedure3 which yielded the most satisfactory

results is the following 3-step procedure:

• The first step is to cut the sample with a diamond saw. The specimen, a cylinder with

a 10 mm diameter and a few centimeter length, is cut perpendicular to the length of the

cylinder into a disk with a thickness of about 3 mm. The disk is then mounted on a

stainless steel AFM plate (Ted Pella) with cyanoacrylate as an adhesive (see Figure 7-7).

• The second step is to grind the sample. The goal of this step is to make the top of the

sample as parallel as possible with the bottom of the mounting plate so that there is no

tilt of the surface during indentation. The sample is placed in a specially designed jig

consisting of a stainless steel outer sleeve with an opening drilled through to match the

diameter of the mounting plate. A stainless steel post fits closely inside the opening and

rests on the back of the mounting plate to apply a light weight to the sample (see Figure

7-7). The sample, inside the jig, is ground on 120 grit ZirMet (Buehler) abrasive paper

until the whole surface is ground. Grinding usually lasts for about 30 s. The sample and

the jig are then cleaned separately. The sample is cleaned in a small dish with n-decane

in an ultrasonic bath for 5 minutes. The jig and the post are cleaned in a beaker with

water in an ultrasonic bath for 5 minutes.

• The third and last step is to polish the sample. A TexMet P (Buehler) pad, a hard,

2The method and results presented in this section were obtained in collaboration with Chris Bobko during
his PhD thesis at MIT, and are presented in a co-authored paper [128].

3The procedure is validated later by a comprehensive AFM study.
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Figure 7-7: (a) Sample on its mounting plate and (b) equipment used to polish the sample.

perforated, non-woven pad is mounted to a lapping wheel. A 1 µm oil-based diamond

suspension (Metadi, Buehler) is sprayed on the pad. The sample and the jig are held on

the pad. The wheel is spun at about 1 rotation per second, the typical velocity underneath

the sample thus being about 20 cm.s−1. The polishing lasts for at least 8 hours. After

polishing, the sample is cleaned in the same manner as after the grinding step.

On the samples for which the polishing procedure was designed, we measured the RMS

roughness Rq on a 50 µm by 50 µm area, after filtering out of the waviness by cutting the

spatial waves with a wavelength greater than 8 µm. The polishing procedure consistently

yielded a roughness Rq less than 20 nm, and even less than 10 nm for some of the samples (see

Figure 7-8). We observed a correlation between the quality of the polishing, and the reflectivity
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Figure 7-8: AFM picture of a cement sample (a) after grinding and (b) after polishing. The
scanned area is 50 µm by 50 µm. The maximum value for the height axis is 5000 nm.
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Figure 7-9: Reflectivity of a cement sample after polishing. The reflected image of the ceiling
neon lights has a great level of details. The picture was focused on the ceiling lights, which is
why the sample appears blurry.

of the surface of the sample. When the surface of the sample became mirror-like (see Figure

7-9), the roughness was below 20 nm.

7.4 Mode d’Emploi of Statistical Indentation Technique for Ce-

mentitious Materials

Given the technical abilities of today indenters (Section 7.2.1), the four-level structure of ce-

mentitious materials (Figure 1-1) can be probed at two levels (Figure 7-10):

• At level I (see Section 6.4): At this level an indentation will probe the individual C-S-H

phases and is referred to as a ‘nanoindentation’.

• At level II: At this level an indentation will probe the cement paste as a homogeneous

composite material and is referred to as a ‘microindentation’.

In this investigation mostly nanoindentations will be performed although a few microinden-

tations will also be used for validation purposes. At the scale of nanoindentations the paste

is clearly heterogeneous so that we aim to use the grid-indentation technique (Section 5.2.2)
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Figure 7-10: Schematics of (a) nanoindentations and (b) microindentations.

and the tools developed in Section 5.3 to measure the C-S-H phase properties and estimate the

paste macroproperties, respectively. Moreover, since C-S-H phases are a mix of C-S-H solid

and pores, we aim to use the tools introduced in Chapter 4 to characterize the microstructure

and the C-S-H solid phase properties. This Section focuses on how to apply these statistical

indentation techniques to cementitious materials.

7.4.1 Indentation Parameters

The statistical indentation techniques rely on performing a large number of indentations (see

the conclusions of Chapter 4 and Chapter 5). Therefore, first, the parameters defining one
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indentation have to be determined.

Indentation Load

In nanoindentation, the maximum indentation depth must be such that the scale separability

condition (4.1) and the Buckle rule (5.3) are respected:

d0 ≪ hmax ≤ dI/10 (7.7)

where d0 and dI are characteristic sizes of the heterogeneities at ‘Level 0’ (see Section 6.5)

and ‘Level I’ (see Section 6.4), respectively. Possible candidates for defining d0 are the C-S-H

particle, for which sizes range from 5 nm (Tennis and Jennings model in Section 6.4.2) up to a

few dozen nanometers are proposed (see Section 6.6). On the other hand, dI is more difficult

to estimate, as the structure of the paste can vary from sample to sample or even within a

sample. Nevertheless, SEM images available in the literature (e.g., see Figure 6-5 or [73])

suggest dI ∼ 2 µm. Therefore Equation (7.7) suggests aiming at:

hnanomax ≃ 200 nm (7.8)

Given that indenters are load-controlled, condition (7.8) can only be satisfied in an average

manner. After a few trials and errors the average maximum depth < hmax >≃ 200 nm is

obtained with a maximum load:

Pnanomax = 2 mN (7.9)

Therefore, such a load will allow us, in a statistical manner, to probe an individual phase of

the paste with each nanoindentation.

In contrast the aim of microindentation is to probe the paste at a scale at which it behaves

in a homogeneous manner, and the scale separability condition (4.1) now becomes:

d
′

I ≪ hmax ≪ D (7.10)

where d
′

I is the characteristic size of the largest heterogeneities at ‘Level I’ (d
′

I ≃ 10 µm,

which is the characteristic size of the remaining clinker) and D is the size of the sample (1 cm
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typically). Given the specifications of the Micro Materials MicroTest (see Section 7.2.1), we

aim to maximize the measurement range, which is satisfied for a maximum load Pmax = 8 N:

hmicromax ≃ 20 µm (7.11)

An interesting observation is that the micro-to-nano indentation parameters scale, on aver-

age, according to:
Pmicromax

Pnanomax

=

(
hmicromax

hnanomax

)α

where α = 1. 8 is not far from the theoretical scaling for Berkovich indentation P ∝ h2 (see

Section 2.2.3, Eq. (2.8)) despite the highly heterogeneous nature of the cement paste at different

scales.

Loading Profile

The maximum load Pmax is not the only criterion defining the loading profile. Considering a

trapezoidal load case, the duration τL of the loading phase, τH of the holding phase and τU of

the unloading phase must also be fixed. As explained in Section 2.3.3, the holding phase should

be long enough to ensure that the measured stiffness is representative of the elastic properties

of the indented material. At the same time, as explained in Section 2.4.3, the holding phase

should be as short possible to ensure that the measured hardness is representative of the strength

properties of the indented material. Here for fixed τL = τU = 10 s, an appropriate duration

τH of the holding phase is determined experimentally.

The experimental study of how long the holding phase should be is performed with microin-

dentations (Pmax = 8 mN, hmax ∼ 20 µm) since at the scale of microindentations the paste is

expected to behave in a homogeneous manner, which greatly simplifies the experimental study.

The study is performed on samples PC-15-0-0 (w/c = 0.15), PC-30-0-0 (w/c = 0.15) and PC-

40-0-0 (w/c = 0.4). On each sample, 50 microindentations are performed with a holding phase

of 5 s, and 50 microindentations are performed with a holding phase of 180 s. The indentation

modulus M and indentation hardness H are calculated with the Oliver and Pharr method (see

Section 2.3.2) and are given in Table 7.7. The coefficient of variation of the 50 tests is on average

of 8% for M and of 13% for H, which confirms that at the scale of the microindentations the
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Indentation modulus M , GPa Indentation hardness H, GPa
w/c 5 s holding 180 s holding 5 s holding 180 s holding

0.4 30.1±2.3 30.3±2.9 0.47±0.04 0.40±0.06
0.3 33.5±2.0 34.2±2.5 0.55±0.06 0.49±0.04
0.15 59.8±4.0 60.1±5.8 1.12±0.17 1.02±0.19

Table 7.7: Indentation modulusM and indentation hardnessH measured with 50 microindenta-
tions for different durations of the holding phase on cement pastes with different water-to-cement
ratios.

paste behaves in a homogeneous manner.

When increasing the duration of the holding phase from 5 s to 180 s, the measured indenta-

tion modulusM changes on average on the three samples by only 1.0%. This observation proves

that, for τL = τU = 10 s, a duration τH = 5 s of the holding phase is long enough to measure

elastic properties unbiased by viscous effects. In contrast we observe that, when increasing the

duration of the holding phase from 5 s to 180 s, the measured indentation hardness H decreases

on average over the three samples by 11.6%. A decrease of the measured indentation hardness

with an increase in the duration of the holding phase was expected (see Section 2.4.3).

In summary, to ensure thatM andH are representative of the elastic and strength properties

of the tested pastes, each nanoindentation will be performed with a loading phase of duration

τL = 10 s, a holding phase of duration τH = 5 s and an unloading phase of duration τU = 10 s.

Parameters of Grid of Indentations

On each sample a large number of N = 400 nanoindentations will be performed on a grid of 20

by 20. To ensure statistical independence of the measured properties between two neighboring

nanoindentations (see Section 5.2.2), the spacing δ between indents must be greater than the

characteristic size of the largest heterogeneities at ‘Level I’. Those largest heterogeneities are

the clinkers which have a characteristic size of about 10 µm (see Figure 1-1). Therefore δ is

fixed to δ = 20 µm.

We now have determined all parameters necessary to perform grids of nanoindentations

on the surface of the cementitious materials. The application of the statistical indentation

techniques presented in Chapters 4 and 5 to the results from grids of nanoindentations is

presented next.
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7.4.2 Deconvolution Technique

The deconvolution technique presented in Section 5.2.3, when applied to results from a grid of

nanoindentations, will provide the mean properties and volume fractions of the mechanically

significant phases of the paste. This process is almost fully automatized with Matlab. The

deconvolution process does require one important input from the operator, that is the number

of phases (or Gaussians) used for the deconvolution. In this Section the number of significant

mechanical phases in a hydrated cement paste is determined.

Hydrated cement pastes can be with confidence divided into at least 3 significant mechanical

phases [58]: Two hydrated phases and the remaining unhydrated clinker. The two hydrated

phases are a low-density (LD) C-S-H phase and a high-density (HD) C-S-H phase. Constanti-

nides and Ulm tentatively identified a third mechanically significant products of hydration (i.e.,

a fourth mechanically significant phase of the entire paste) which they interpreted as Port-

landite [58]. More recently Mondal et al. [129] also identified a third mechanically significant

hydration product which they interpreted as a high stiffness C-S-H phase.

A grid of nanoindentations is performed on samples PC-40-0-0 (w/c = 0.4) and PC-20-

25(CF1)-0 (w/c = 0.2, 25% of calcareous filler of first type) with the parameters determined in

Section 7.4.1. A coupled (see Section 5.2.3) 4-Gaussian deconvolution ofM and H is performed.

The results of the deconvolution are displayed in Figure 7-11 and given in Table 7.8. The mean

values for the first peak (M ∼ 20 GPa, H ∼ 0.5 GPa) and for the second peak (M ∼ 30 GPa,

H ∼ 1 GPa) compare fairly well with those measured by Constantinides and Ulm [58] (see

Tab. 6.3) for LD C-S-H (MLD = 18.2 ± 4.2 GPa, HLD = 0.45 ± 0.14 GPa) and HD C-S-H

(MHD = 29.1 ± 4.0 GPa, HHD = 0.83 ± 0.18 GPa) while the fourth peak (M ∼ 120 GPa,

H ∼ 10 GPa) is identified as unhydrated remaining clinker since its mean properties compare

well with those reported for pure clinker phases (for instance, for C3S,MCL = 135.0±7.0 GPa,

HCL = 8.7 ± 0.5 GPa, see Tab. 6.2) [193]. Like Constantinides and Ulm [58], we tentatively

identify a third mechanically significant hydration product. But this third peak has a low

volume fraction and a large standard deviation, and one can reasonably wonder whether this

peak characterizes a mechanically significant phase or whether it is rather an artifact of the

grid indentation technique, i.e., a composite response. This question is answered by hypothesis

testing.
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Figure 7-11: 4-Gaussian deconvolution results from a grid of nanoindentations at Pmax = 2 mN
for (a) sample PC-20-25(CF1)-0 and (b) sample PC-40-0-0.

If the third peak is a composite response, it should vanish when decreasing the maximum

load Pmax (see Section 5.2.3). Indeed, when decreasing the maximum load, the maximum

depth hmax decreases as well and hence the volume of material probed. As a consequence,

when decreasing Pmax, the probability of sensing two neighboring phases with one indentation

decreases and the composite peak should vanish.

Therefore, on the same two cement samples (PC-40-0-0 and PC-20-25(CF1)-0) a grid of

400 ultrashallow nanoindentations is performed at Pmax = 100 µN. The maximum depth of

those ultrashallow indents is hmax = 27± 13 nm, i.e., one order of magnitude smaller than for

nanoindentations. The results of a 4-Gaussian deconvolution of those ultrashallow indentations

are displayed in Figure 7-12 and given in Table 7.8. For both samples the volume fraction of

the third peak increases with a decreasing Pmax. Instead of vanishing, the third peak becomes

more distinct at low loads. This observation proves that the third peak is not an artifact of the

deconvolution technique (a composite response) but a mechanically significant phase. Given

that the newly identified phase has mechanical properties greater than those of the already
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Pmax = 2 mN Pmax = 0.1 mN
PC-20-25(CF1)-0 PC-40—0-0 PC-20-25(CF1)-0 PC-40—0-0

M H M H M H M H

m(1) 20.08 0.522 20.67 0.551 29.85 1.267 16.13 0.524
Peak 1 s(2) 4.03 0.236 4.26 0.149 6.95 0.336 5.77 0.337

f (3) 0.026 0.026 0.361 0.361 0.141 0.141 0.268 0.268
m(1) 38.08 1.071 29.10 0.852 47.75 2.148 28.57 1.243

Peak 2 s(2) 7.52 0.294 3.93 0.151 8.03 0.542 6.68 0.335
f (3) 0.567 0.567 0.331 0.331 0.370 0.370 0.265 0.265
m(1) 55.18 1.982 41.59 1.509 64.60 3.393 46.55 2.135

Peak 3 s(2) 9.27 0.617 8.57 0.507 8.50 0.703 11.20 0.375
f (3) 0.172 0.172 0.199 0.199 0.219 0.219 0.298 0.298
m(1) 130.4 8.796 108.4 7.500 144.6 9.540 114.0 6.958

Peak 4 s(2) 24.9 2.023 29.5 3.211 24.1 1.703 56.2 2.674
f (3) 0.235 0.235 0.108 0.108 0.270 0.270 0.169 0.169

Table 7.8: Deconvolution results for a grid of nanoindentations at Pmax = 2 mN and Pmax =
100 µN for samples PC-20-25(CF1)-0 and PC-40-0-0.
(1) Mean value, in GPa
(2) Standard deviation, in GPa
(3) Volume fraction, no units

identified LD C-S-H and HD C-S-H phases, we name it an UHD (Ultra-High Density) C(-S-)H

phase, the use of parentheses expressing our inability to determine a priori whether this third

peak is made of C-S-H (as postulated by Mondal et al. [129]), of Portlandite CH (as postulated

by Constantinides and Ulm [58]), or of a mixture of both.

For both samples the mean indentation modulus of each phase only slightly changes when

decreasing Pmax from 2 mN to 100 µN. This justifies the choice of the maximum load of Pmax = 2

mN which appears to be low enough to ensure the scale separability condition: On average each

indent probes a volume made of one material phase and not a composite of material phases. In

contrast, for both samples the mean indentation hardnessH of the first two peaks is significantly

greater at Pmax = 100 µN than at Pmax = 2 mN. A change in hardness at very low depths is

not surprising (see Section 7.2.3) and may be due to the bluntness of the tip as well as to an

indentation size effect.

In summary, we identified that the cement paste is made of 4 mechanically significant phases,

i.e., 3 hydrated phases and the remaining unhydrated clinker. Therefore, a deconvolution of

a grid of nanoindentations will be performed with 4 Gaussians (4 phases). Equivalently a
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Figure 7-12: 4-Gaussian deconvolution results from a grid of nanoindentations at Pmax = 100
µN for (a) sample PC-20-25(CF1)-0 and (b) sample PC-40-0-0.

PC-20-25(CF1)-0 PC-40—0-0
M H M H

m(1) 29.85 1.267 16.13 0.524
Peak 1 s(2) 6.95 0.336 5.77 0.337

f (3) 0.141 0.141 0.268 0.268
m(1) 47.75 2.148 28.57 1.243

Peak 2 s(2) 8.03 0.542 6.68 0.335
f (3) 0.370 0.370 0.265 0.265
m(1) 64.60 3.393 46.55 2.135

Peak 3 s(2) 8.50 0.703 11.20 0.375
f (3) 0.219 0.219 0.298 0.298
m(1) 144.6 9.540 114.0 6.958

Peak 4 s(2) 24.1 1.703 56.2 2.674
f (3) 0.270 0.270 0.169 0.169

Table 7.9: Deconvolution results for a grid of nanoindentations at Pmax = 100 µN for sample
PC-40-0-0 and sample PC-20-25(CF1)-0.
(1) Mean value, in GPa
(2) Standard deviation, in GPa
(3) Volume fraction, no units
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deconvolution of nanoindentations performed on the hydrated matter only will be performed

with 3 Gaussians (3 phases).

7.4.3 Determination of Microstructure by Indentation

Since a large number N of nanoindentations will be performed with each grid of nanoindenta-

tions on the surface of a sample, a large number N
′

of those nanoindentations will be performed

on the C-S-H phases. Therefore, since the C-S-H phases are a mix of C-S-H solid and pores (see

Section 6.4), and in accordance with the conclusions of Chapter 4, determining the microstruc-

ture of the C-S-H phases, i.e., the C-S-H solid properties and the local packing densities (or

porosities) should be possible. Making use of Chapter 4 requires the solid phase to be isotropic,

which for C-S-H is unlikely at the scale of a particle (see Section 6.5). Nevertheless, since C-S-H

is amorphous as a whole, C-S-H particles are likely to show little order from one to the other

and we associate to the C-S-H crystal (‘Level 0’) an isotropic mechanical equivalent which will

be referred to simply as ‘the C-S-H solid’.

The assessment of the microstructure is performed by using the dimensionless relations

linking indentation modulus to microstructure (Eqs. (4.34) or (4.37), depending on the mor-

phology) and indentation hardness to microstructure (Eqs. (4.99) or (4.100), depending on the

morphology). Since the nanoindentations designed and presented here to correctly assess the

strength properties are too short in duration to provide a reliable measurement of the creep

properties (τH = 5 s, see Section 7.4.1), creep properties are not included in the assessment of

the microstructure. Making use of the sets of indentation moduli {Mi}i=1..N ′ and indentation

hardnesses {Hi}i=1..N ′ measured on the hydration products, the microstructure (indentation

modulus ms, Poisson’s ratio νs, indentation hardness hs and friction coefficient αs of the solid

phase, packing density η0 at percolation, as well as a set {ηi}i=1..N ′ of local packing densities)

is determined by minimizing the sum of the quadratic error between model predictions and the

experiment:

min
(ms,νs,hs,αs ,η0)

η
i=1,N

′

N
′

∑

i=1

[(
1− ms ΠM (νs, ηi, η0)

Mi

)2
+

(
1− hs ΠH (αs, ηi, η0)

Hi

)2]
(7.12)

The minimization procedure will gain in stability by fixing some known parameters:
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• The percolation threshold at η0 = 0.5 (see Figure 6-12) reminiscent of a nanogranular

morphology with spherical particles (see Section 6.4.3, Fig. 6-12). Given the relatively

high packing densities of C-S-H (on-average greater than η = 0.64) the particle aspect

ratio has a negligible effect on the indentation modulus—packing density scaling relation

(see Section 4.2.5.

• The asymptotic indentation modulus of the quasi-isotropic C-S-H solid particle at ms =

63.5 GPa according to Eq. (6.20) determined from MD simulations and confirmed by

extrapolation of nanoindentation results (see Section 6.5).

• The Poisson’s ratio of the C-S-H solid phase at an arbitrary value νs = 0.2, which has a

negligible effect on the indentation modulus—packing density scaling relation for any mor-

phology (see Section 4.2.3). The particular value of νs = 0.2 simplifies the dimensionless

M − η scaling relation:

M

ms
= ΠM (νs = 1/5, ηi, η0 = 1/2) = 2η − 1 ≥ 0 (7.13)

Assuming that the same holds true for strength properties, the dimensionless relations

ΠM (νs = 1/5, ηi, η0 = 1/2) and ΠH (αs, ηi, η0 = 1/2) given by Eqs. (7.13) and (4.100), respec-

tively, will be used to solve for two solid strength properties (hs, αs) and N ′ packing density

values from:

min
(hs,αs )
η
i=1,N

′

N
′

∑

i=1

[(
1− ms ΠM (νs = 0.2, ηi, η0 = 0.5)

Mi

)2
+

(
1− hsΠH (αs, ηi, η0 = 0.5)

Hi

)2]
(7.14)

where ms = 63.5 GPa.

Finally, a way of filtering the nanoindentations performed on the products of hydration out

of a grid of nanoindentations needs to be designed. Since the indentation modulus ms of the

C-S-H solid is expected to be an upper bound of the indentation modulus of all C-S-H phases,

all nanoindentations with M > 63.5 GPa are discarded when applying the microstructure

assessment technique. In addition, to respect a symmetry between indentation modulus and
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hardness, a threshold value on the measured indentation hardness is introduced as well. In

conclusion, we will consider that all indents withM ≤ 63.5 GPa and H ≤ 3 GPa are performed

on hydration products. This choice will be validated later on.

7.4.4 Estimation of Indentation Macroproperties

Finally, the derivations performed in Section 5.3 will be used to estimate the composite indenta-

tion properties of a cement paste from a grid of nanoindentations. The homogenized indentation

modulus of the paste will be calculated with Eq. (5.16) from a set of moduli {Mi}i=1..N mea-

sured with a grid of nanoindentations while the homogenized indentation hardness of the paste

will be calculated by solving Eqs. (5.44) for a set of hardness values {Hi}i=1..N measured with

a grid of nanoindentations.

We are now ready to validate these tools of indentation analysis for cement-based materials.

7.5 Validation for Cementitious Materials

This Section focuses on validating the techniques here introduced for their use on cementitious

materials.

7.5.1 Polishing Procedure

The polishing procedure4 presented in Section 7.5.1 is here validated on sample PC-20-0-0. To

do so, the sample preparation procedure is interrupted to perform both nanoindentation and

roughness measurements. Specifically, the sample is tested directly after the grinding and after

one hour, two hours, four hours and the full eight hours of polishing.

The primary method of obtaining topographic information about the sample surface is the

use of an Atomic Force Microscope (AFM). Topographic images are obtained with a Quesant

Q-Scope 250 AFM. The data are acquired using a wavemode or ‘tapping’ scan. For each scan

the resolution is 512x512 pixels and the scan rate is 1.0 Hz. Varying scan sizes are used, from

2 µm by 2 µm to 80 µm by 80 µm.

4The method and results presented in this section were obtained in cooperation with Chris Bobko during his
PhD thesis at MIT, and are presented in a co-authored paper [128].
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Figure 7-13: Coefficient of variation (COV) of the RMS roughness Rq measured after four hours
of polishing versus the scan size (from [128]).

Following the AFM imaging procedure each file is digitally analyzed in order to extract a

roughness value. Before calculation of the roughness, a linear slope correction is performed

to account for an alignment difference between the reference plane of AFM imaging and the

overall slope of the sample surface. The measurement of roughness is a root-mean-squared

average (RMS) of the topography of the surface, Rq, defined by:

Rq =

√√√√ 1

N2

N∑

i=1

N∑

j=1

z2ij (7.15)

where N is the number of pixels in each scan edge and zij is the height at position (i, j) from the

mean plane. In addition, a Gaussian filter is applied in order to filter out spatial waves having a

larger wavelength than 8 µm, which is out of proportion with regard to the characteristic size

of the nanoindentations.

After four hours of polishing, a number of AFM images are obtained at different locations to

assess the variability of the roughness measurement for different scanning sizes. As is observed

in Figure 7-13, for small scan sizes (2 µm x 2 µm and 10 µm x 10 µm) the measured roughness

Rq exhibits significant variability. For larger scan sizes (50 µm x 50 µm and 80 µm x 80 µm)

the coefficient of variation of Rq decreases significantly because, for sizes greater than 50 µm,

the scanning averages over the characteristic length scale of the cement paste and clinker.
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Figure 7-14: RMS roughness Rq for different polishing durations and AFM scan sizes. After
two to four hours of polishing, the roughness remains unchanged (from [128]).

The roughness results as a function of polishing time, as displayed in Figure 7-14, show

that roughness values, in general, decrease sharply over time. Interestingly however, further

polishing after four hours shows little, if any, beneficial effect. Figure 7-14 also highlights the

observation that the roughness values at different sampling sizes are drastically different.

The deconvolution of the nanoindentation tests completes the data set linking roughness and

nanoindentation results. The deconvolution was carried out with three Gaussians. Figure 7-15

illustrates the relationship between decreasing roughness and the convergence of the mean peak

properties and volume fraction results towards unique values. These quantities are graphed

versus the roughness values measured over a 50 µm x 50 µm area because of the low coefficient

of variation in this sampling size (see Figure 7-13). Figure 7-15 indicates that below a roughness

of about 100 nm (corresponding to the roughness achieved after two hours of polishing) the

results for the extracted indentation hardness and moduli for the first two peaks are within 5%

of the values for the fully (eight hour) polished sample. This result is somewhat surprising, since

100 nm is comparable to the average depth (hmax ≃ 200 nm) of the nanoindentations. Those

results also show that the 8-hour polishing time used in the procedure described in Section 7.5.1

is a conservative duration.
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c)

a)

b)

Figure 7-15: Nanoindentation deconvolution results versus RMS Roughness Rq. (a) Mean
indentation modulus M of each phase. (b) Mean indentation hardness H of each phase. (c)
Volume fraction of each phase. The error bars in indentation modulus and hardness represent
plus and minus one standard deviation. The mean properties and volume fractions converge
to within about 5% of the final values when the RMS roughness is less than 100 nm.
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Indentation modulus M Indentation hardness H
Grid 1 Grid 2 Grid 1 Grid 2

m(1) N.A. N.A. N.A. N.A.
Peak 1 s(2) N.A. N.A. N.A. N.A.

f (3) N.A. N.A. N.A. N.A.
m(1) 35.20 39.28 1.106 1.296

Peak 2 s(2) 5.84 5.92 0.251 0.301
f (3) 0.492 0.556 0.492 0.556
m(1) 52.43 57.99 1.947 2.187

Peak 3 s(2) 11.39 9.92 0.528 0.590
f (3) 0.252 0.185 0.252 0.185
m(1) 117.54 112.79 7.695 7.889

Peak 4 s(2) 28.64 22.88 2.218 1.904
f (3) 0.256 0.259 0.256 0.259

Table 7.10: Results of the 4-Gaussian deconvolution for two grids of 400 nanoindentations on
sample PC-20-0-2.
(1) Mean value, in GPa
(2) Standard deviation, in GPa
(3) Volume fraction, no units

7.5.2 Repeatability of Grid-Indentation Technique and Deconvolution

Process

This Section focuses on the repeatability of the grid-indentation technique (see Sections 5.2.2)

and of the deconvolution process (Sections 5.2.3 and 7.4.2) to measure phase properties. The

experimental study is performed on samples PC-30-25(CF1)-0 (w/c = 0.3 and 25% of calcareous

filler of type 1), PC-40-10(CF1)-0 (w/c = 0.4 and 10% of calcareous filler of type 1) and PC-

20-0-2 (w/c = 0.2 with no additives, heat treated after 2 days of hydration). On each of those

samples two grids of nanoindentations are performed with the parameters defined in Section

7.4.1. Each grid is then deconvoluted with four Gaussians. The results of the deconvolution for

samples PC-30-25(CF1)-0, PC-40-10(CF1)-0 and PC-20-0-2 are given in Table 7.10, 7.11 and

7.12, respectively, and displayed in Figure 7-16.

For sample PC-20-0-2, the 4-Gaussian deconvolution process converges toward a 3-Gaussian

distribution for the two grids performed. On sample PC-40-10(CF1)-0 the two grids yield very

different mechanical properties for the peak with the highest mechanical properties, corre-

sponding to the clinker: At a water-cement ratio w/c = 0.4, which is close to stoichiometric

conditions, clinker almost has disappeared. On average however, the results of the two grids
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Indentation modulus M Indentation hardness H
Grid 1 Grid 2 Grid 1 Grid 2

m(1) 21.74 23.38 0.533 0.564
Peak 1 s(2) 3.60 3.39 0.143 0.160

f (3) 0.041 0.086 0.041 0.086
m(1) 30.67 31.91 0.921 0.907

Peak 2 s(2) 5.33 4.38 0.228 0.183
f (3) 0.533 0.540 0.533 0.540
m(1) 44.52 43.48 1.525 1.477

Peak 3 s(2) 7.16 7.19 0.375 0.327
f (3) 0.264 0.242 0.264 0.242
m(1) 104.38 107.65 6.692 7.015

Peak 4 s(2) 39.66 39.83 3.336 2.681
f (3) 0.161 0.133 0.161 0.133

Table 7.11: Results of the 4-Gaussian deconvolution for two grids of 400 nanoindentations on
sample PC-30-25(CF1)-0.
(1) Mean value, in GPa
(2) Standard deviation, in GPa
(3) Volume fraction, no units

Indentation modulus M Indentation hardness H
Grid 1 Grid 2 Grid 1 Grid 2

m(1) 17.58 19.63 0.545 0.676
Peak 1 s(2) 4.03 5.42 0.129 0.105

f (3) 0.132 0.055 0.132 0.055
m(1) 27.86 30.74 0.888 1.028

Peak 2 s(2) 5.06 5.48 0.214 0.247
f (3) 0.445 0.511 0.445 0.511
m(1) 40.84 44.66 1.592 1.685

Peak 3 s(2) 7.91 8.26 0.377 0.410
f (3) 0.273 0.255 0.273 0.255
m(1) 90.71 141.39 5.678 8.939

Peak 4 s(2) 41.96 23.69 3.446 1.335
f (3) 0.150 0.179 0.150 0.179

Table 7.12: Results of the 4-Gaussian deconvolution for two grids of 400 nanoindentations on
sample PC-40-10(CF1)-0.
(1) Mean value, in GPa
(2) Standard deviation, in GPa
(3) Volume fraction, no units
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Figure 7-16: Results of the repeatability study of the grid-indentation technique. (a) Decon-
voluted indentation moduli M . (b) Deconvoluted indentation hardnesses H. (c) Deconvoluted
volume fractions f .
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compare very well. For the indentation modulus the two grids yield values which differ on av-

erage by 6.9% (3.0 GPa) for the mean value and by 9.6% (1.1 GPa) for the standard deviation.

For the indentation hardness those differences are on average of 8.1% (0.14 GPa) for the mean

value and of 14.4% (0.13 GPa) for the standard deviation. The deconvoluted volume fractions

differ in absolute error by 4.0% on average. Therefore the grid indentation technique associated

with the deconvolution process shows a very good repeatability.

7.5.3 Isotropy

The focus of this Section5 is to verify that at the scale of the nanoindentations cement paste, or

more precisely the C-S-H phases, are indeed isotropic, as was assumed to derive the indentation

analysis tools in Part II and III. The study is performed with the cement specimens PC-30-0-0

(w/c = 0.3, no additives and no heat treatment), PC-25-0-2 (w/c = 0.25, heat treatment after

two days of hydration) and PC-20-24(SF)-2 (w/c = 0.2 and 24% of silica fumes). Within each

specimen (a cylinder with a 10 mm diameter and a few centimeters length, see Section 7.3) two

samples with two different types of cuts are made. The first sample is cut perpendicular to the

length of the cylinder while the second sample is cut along the original length of the cement

cylinder. Both samples are then ground and polished according to the surface preparation

procedure described in Section 7.3. On both samples a grid of nanoindentations is performed and

the nanoindentation results are deconvoluted according to the procedure described in Section

7.4.2.

The results of the deconvolution are displayed in Figure 7-17: Samples with orthogonal cuts

yield, at the same scale of nanoindentations monitored by the same indentation force, very

similar deconvolution results. The relative difference between orthogonal cuts is on average of

6.6% for the deconvoluted indentation moduli and of 8.9% for the deconvoluted indentation

hardnesses. The absolute difference on the deconvoluted volume fractions is on average of

4.6%. Those differences are very close to the accuracy of the deconvolution technique (see

Section 7.5.2). This study proves that at the scale of nanoindentations C-S-H indeed behaves

mechanically in an isotropic manner.

5The nanoindentation experiments used in this Section were performed by Mahalia Miller during her Unde-
graduate Research Opportunity Program in Prof. Ulm’s group.
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Figure 7-17: Deconvolution results for samples cut perpendicular to the specimen cylinder (cut
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Deconvoluted indentation hardnesses H. (c) Deconvoluted volume fractions f .
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Figure 7-18: Probability density function of the indentation modulus M measured on sample
PC-30-0-0 from (a) a grid of nanoindentations and (b) 50 microindentations.

7.5.4 Validation of Self-Consistent Indentation Technique

The focus of this Section is the validation of the technique of self-consistent homogenization of

indentation properties developed in Section 5.3 for the indentation modulus and the indentation

hardness. The validation is performed on the cement samples PC-15-0-0 (w/c = 0.15), PC-30-

0-0 (w/c = 0.3) and PC-40-0-0 (w/c = 0.4). On each paste 50 microindentations (Pmax = 8

N) and a grid of nanoindentations (Pmax = 2 mN) are performed. As can be observed from

the frequency plots displayed in Figure 7-18, the nanoindentations yield indeed a heterogeneous

response of the paste whereas the microindentations yield a homogeneous response of the paste.
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Indentation modulus Indentation hardness

Sample
Homogenized
Mhom, GPa

Measured
Mmicro, GPa

Homogenized
Hhom, GPa

Measured
Hmicro, GPa

PC-40-0-0 33.7 30.1±2.3 0.93 0.47±0.04
PC-30-0-0 34.9 33.5±2.0 1.01 0.55±0.06
PC-15-0-0 58.5 59.8±4.0 2.46 1.12±0.17

Table 7.13: Indentation modulus Mmicro and hardness Hmicro measured from microindenta-
tions; indentation modulus Mhom and indentation hardness Hhom homogenized from nanoin-
dentations.

Solving Equation (5.16) with Matlab, the homogenized indentation modulusMhom is calcu-

lated for each grid of nanoindentations. Table 7.13 gives the homogenized indentation modulus

Mhom and the indentation modulusMmicro measured by microindentations. The difference be-

tweenMmicro andMhom averaged over the three cement samples is only 6.1%, which proves the

validity of the homogenization scheme developed in Section 5.3.1 for the indentation modulus.

To calculate the homogenized indentation hardness Hhom from a grid of nanoindentations,

Maple is used to solve the homogenization scheme described in Section 5.3.2. Table 7.13 gives

the homogenized indentation hardness Hhom and the indentation hardness Hmicro measured

by microindentations. Hmicro is significantly lower than the homogenized Hhom, by about 50%

on average. The observed discrepancy hints towards size effects in the indentation strength

response of the material at different scales, induced eventually by microcracking which on a

wide range of materials frequently occurs during microindentation.

7.5.5 Validation of Microstructure Assessment Technique

This Section focuses on validating the microstructure assessment technique described in Section

7.4.3. This technique is at the core of this work since it is the tool that will enable us to quantify

the effect of mix proportions on the microstructure. Consequently, a particular attention is

dedicated to its validation.

Filtering Nanoindentations Results

As a prerequisite to the use of the microstructure assessment technique, nanoindentations must

be filtered so that only nanoindentations performed on hydration products are kept. This
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Figure 7-19: Comparison of the volume fraction fCL of clinker as estimated from filtering and
from a four-Gaussian deconvolution.

division is done by considering that the sought nanoindentations are those where M < ms =

63.5 GPa and H < 3 GPa. Here, the choice of such a criterion is validated.

When filtering the data, discarded nanoindentations are those performed on the remaining

unhydrated clinker. Thus the fraction of discarded nanoindentations is an estimate of the

volume fraction of remaining unhydrated clinker fCL. An estimate of fCL can be obtained in

another manner: By deconvolution. Indeed, when performing a four-Gaussian deconvolution

of a whole grid of nanoindentations, the fourth peak is associated with the remaining clinker

(see Section 7.4.2) and thus the volume fraction of the fourth peak also provides an estimate of

fCL. Recalling that once the number of mechanical phases is fixed the deconvolution process is

fully automatized, a comparison of the two estimates of fCL is a good method to validate the

filtering.

Figure 7-19 displays for all samples considered in this study the volume fraction fCL of

clinker estimated from filtering and that estimated from a four-Gaussian deconvolution. Both

estimates yield very similar results, which validates not only the filtering process but also the

threshold values used for this filtering.

To further validate the value of ms = 63.5 GPa, Figure 7-20 displays this value on top of
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a histogram of all nanoindentations performed in this work. The main peak of this histogram

(at M ∼ 35 GPa) is the hydrated phase of the materials. As expected, ms = 63.5 GPa is an

upper bound of this peak.

Choice of Morphology

For each tested sample the C-S-H solid strength properties (hs, αs) and local packing densities

{ηi}i=1..N are determined by applying the microstructure assessment technique. Figure 7-

21 shows typical results of the M(η) and H(η) fits. The experimental points are randomly

distributed on both sides of the model curves. More precisely Figure 7-22 shows the distribution

of the error between the experimental values and the fitted ones. As one can observe, the

distribution is close to a normal distribution, which a posteriori justifies the scaling relations

ΠM (νs = 0.2, ηi, η0 = 0.5) and ΠH (αs, ηi, η0 = 0.5) used for the fitting. This observation proves

the relevance of a granular morphology to capture the mechanical features of C-S-H.

In addition, since the fitting procedure is on all nanoindentations on hydration products,

Figure 7-21 also shows that the third hydration product tentatively identified in Section 7.4.2

as ultra-high density (UHD) C(-S-)H is also very well captured by the fitting procedure. Said
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Figure 7-21: Example of assessment of microstructure for sample PC-30-0-0.

otherwise, although the chemical nature of this third hydration product remains unclear, its

mechanical behavior as sensed by nanoindentation can perfectly be captured with the same

scaling relations as for LD C-S-H and HD C-S-H, which by mechanical analogy justifies the

name of ultra-high density (UHD) C(-S-)H.

Packing Density Distribution

The ultimate validation of the microstructure assessment technique must be an independent

measurement of the porosity of the sample. Such a measurement, down to pore sizes on the
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Figure 7-22: Result of the microstructure assessment technique: Distribution of the error (a)
on the indentation modulus Mexp −Mtheo and (b) on the indentation hardness Hexp −Htheo.
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order of a few nanometers, proves particularly complex from an experimental point of view.

Nevertheless, a comparison with the benchmark of the Powers-Brownyard model (see Section

6.4.2) can be performed. This comparison is performed on the reference samples with no heat

treatment (see Section 7.1.1).

The packing density distribution we obtain for each sample spans a large range of packing

densities (see Figure 7-21). In order to compare this packing density distribution with the

Powers-Brownyard model, the mean porosity ϕ is determined from the mean of the set of fitted

packing densities {ηi}i=1..N : ϕ = 1− < ηi >.

The resulting mean porosity is compared with an estimate of the porosity obtained with the

Powers-Brownyard model. Such a comparison requires an adaptation of the Powers-Brownyard

model to sub-stoichiometric conditions. Since for cementitious materials in sub-stoichiometric

conditions the shrinkage and the volume of capillary pores are both very small, we assume

Vcs = 0 and Vcp = 0 in Eqs. (6.6). Recalling that the Powers-Brownyard model assumes that

C-S-H is a gel made of 28% porosity, the Powers-Brownyard model yields an estimation of the

overall porosity of the sample:

ϕ =
0.28Vgel
Vgel + Vcl

=
0.59ξ

1 + 1.12ξ
(7.16)

where the hydration degree ξ can be calculated from its definition (6.7):

ξ = 1− fCL
1− p (7.17)

In Eq. (7.17) the initial porosity p is given by Eq. (6.8) and the actual volume fraction of

clinker fCL can be obtained from a four-Gaussian deconvolution of the results (see Figure 7-19).

A comparison of the mean porosities ϕ as obtained from the packing density distributions and

as estimated with the Powers-Brownyard model is reported in Figure 7-23. Except for the most

extreme sub-stoichiometric conditions w/c = 0.15 (for which the Powers-Brownyard model was

not intended), results are in perfect agreement. We conclude that the microstructure assessment

technique is a highly reliable means of assessing packing density distributions.
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7.6 Chapter Summary

This Chapter introduced and validated experimentally the statistical indentation techniques

developed in Part III. The tools of indentation analysis are now in place, both analytically

and experimentally. The application of those tools to a grid of nanoindentations performed on

cementitious materials will provide a wealth of information on the material:

• The indentation macroproperties, i.e., an estimate of the homogenized properties of the

cementitious material.

• The strength properties (hs, αs) of the C-S-H solid.

• The porosity (or packing density) distributions and the porosity of the sample.

• The volume fraction of remaining clinker.

• The properties (indentation modulus M , indentation hardness H, packing density η,

volume fraction f) of each individual hydration product.

The statistical indentation techniques and their outputs are summarized in Figure 7-24.

We are now ready to start the experimental investigation of the effect of mix proportions and
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Figure 7-24: Flow chart summarizing the statistical indentation techniques and their outputs
for the experimental investigation.

processing on the microstructure and fundamental nanomechanical properties, including creep,

of cementitious materials. This investigation is the focus of the next Part.
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Chapter 8

Influence of Mix Proportions and

Processing on Microstructure

Parts II and III of this report developed the statistical indentation techniques necessary to assess

microstructure and mechanical performance by indentation means. Chapters 6 and 7 defined

the considered cementitious materials and how those techniques were applied. Together, they

offer the experimental possibility to implement the Materials Science paradigm for cementitious

materials, i.e., to assess the link between mix proportions or processing, microstructure, and

performance. This experimental investigation is the focus of this Part, which is composed of

two Chapters: This Chapter investigates the link between mix proportions or processing and

microstructure for sub-stoichiometric cementitious materials. Chapter 9 investigates the link

between creep properties and microstructure.

The experimental investigation presented1 in this Chapter focuses on elastic and strength

indentation properties, which form the basis for the microstructure assessment technique. The

influence of water-cement ratio, heat treatment, silica fumes and calcareous filler on the mi-

crostructure are considered successively. We aim at determining how each of those parameters

modifies the properties of C-S-H particles and the packing density distributions. Then, a pre-

dictive tool is developed which provides, for given mix proportions and processing, the volume

fractions of remaining clinker, solid C-S-H, and gel porosity.

1The full results of all deconvolutions, all microstructure assessments and all homogenizations of indentation
properties are given in Appendix B.
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8.1 Influence of Water-Cement Ratio

This Section presents and discusses the results relative to the effect of the water-to-cement ratio

on the microstructure. The question we want to address is whether the water-to-cement ratio

modifies the properties of the C-S-H particles and/or the packing density distributions? To

answer these questions, here we focus on the non-heat-treated reference samples (PC-15-0-0,

PC-20-0-0, PC-30-0-0, PC-35-0-0 and PC-40-0-0, see Section 7.1.1), which cover water-cement

ratios ranging from w/c = 0.15 to w/c = 0.4.

8.1.1 Results

C-S-H Particle Properties

The C-S-H particle properties, back-calculated with the microstructure assessment technique

(see Section 7.4.3), are given in Appendix B. The hardness of the C-S-H solid, hs = 2.99 GPa

±6.4% shows very little variability, despite the large span in water-cement ratios considered.

Said otherwise, the hardness hs of the C-S-H solid is independent of the water-cement ratio.

In contrast, the cohesion cs = 0.392 GPa ±27.5% and the friction coefficient αs = 0.207±
68.1% show a substantially greater variability, but exhibit no trend with the water-cement ratio:

This large variability is most likely due to a high-sensitivity to noise in the reverse analysis of

the microstructure assessment.

Properties of C-S-H Phases

The deconvolution process, when applied to the nanoindentations performed on the hydration

products, provides the phase properties (indentation modulus M , indentation hardness H and

packing density η) of the three identified C-S-H phases (Low-Density C-S-H, High-Density C-S-

H and Ultra-High-Density C(-S-)H). The deconvoluted phase properties are displayed in Figure

8-1. Those properties do not depend on the water-cement ratio:

• for Low-Density C-S-H: MLD = 23.3 GPa±8.5%, HLD = 0.60 GPa±2.6%, ηLD = 0.69±
2.5%
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• for High-Density C-S-H: MHD = 30.6 GPa±5.7%, HHD = 0.86 GPa±7.9%, ηHD =

0.74± 3.5%

• for Ultra-High-Density C(-S-)H: MUHD = 43.2 GPa±5.1%, HUHD = 1.5 GPa±13.0%,

ηUHD = 0.83± 1.3%

Therefore, the phase properties of the three C-S-H phases are material invariant.

Packing Density Distributions and Volume Fractions

The microstructure assessment technique enables to obtain the packing density distributions

(see Section 7.4.3). Although the phase properties do not change when modifying the water-

to-cement ratio w/c, the packing density distributions change dramatically, as can be observed

on Figure 8-2.

Those changes in packing density distributions are a consequence of the changes in volume

fractions of the three C-S-H phases within the hydrated matter (see Figure 8-3a). Decreasing

the water-cement ratio favors denser phases. Below w/c = 0.2, no more LD C-S-H is present.

Ultimately, at w/c = 0.15, only UHD C(-S-)H is present. When decreasing the water-cement

ratio w/c, as a result of the densification of the hydration products with a decreasing water-

cement ratio w/c, the gel porosity in the paste decreases as well (see Figure 8-3b). Figure

8-3b also shows that when decreasing the water-cement ratio, the volume fraction of remaining

clinker increases.

8.1.2 Discussion

Having quantified the influence of the water-cement ratio on the microstructure, one can reason-

ably wonder how those changes in microstructure affect the macroproperties. The macroprop-

erties can be estimated from the grid of nanoindentations with the tools presented in Section

7.4.4. Figure 8-4 displays the estimated macroproperties and shows that the water-cement

ratio has a dramatic effect on the macroproperties. When decreasing the water-cement ratio

from quasi-stoichiometric conditions (w/c = 0.4) down to w/c = 0.15, both the homogenized

indentation modulus Mhom and the homogenized indentation hardness Hhom increase by more

than 100%.
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Figure 8-1: Evidence of the invariance of the C-S-H phases properties in samples with various
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255



0

1

2

3

4

5

6

7

8

9

0.5 0.6 0.7 0.8 0.9 1

Experimental

LD C-S-H

HD C-S-H

UHD C-S-H

Fit

1

0

1

2

3

4

5

6

7

8

9

0.5 0.6 0.7 0.8 0.9 1

Experimental
LD C-S-H
HD C-S-H
UHD C-S-H
Fit

a)

b)

Packing Density η

Packing Density η

F
re
q
u
en
cy

F
re
q
u
en
cy

Figure 8-2: Packing density distribution in cement paste with (a) w/c = 0.4 and with (b)
w/c = 0.2.

256



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

Clinker

C-S-H solid

Gel porosity

0.10
0.16 0.22 0.21 0.25

0.47

0.51
0.60 0.61

0.65

0.43
0.33

0.18 0.17 0.10

0.15 0.3 0.4w/c 0.350.2

V
o
lu
m
e 
F
ra
ct
io
n
 

in
 P
as
te

b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

UHD C(-S-)H

HD C-S-H

LD C-S-H

0.15 0.3 0.4w/c 0.350.2

V
o
lu
m
e 
F
ra
ct
io
n
 i
n
 

H
y
d
ra
te
d
 M

at
te
r

0.03
0.30

0.47
0.50

0.03

0.74

0.52
0.35 0.29

0.97

0.23 0.18 0.18 0.21

a)

Figure 8-3: Changes in volume fractions with the water-cement ratio. (a) Volume fractions
of the three C-S-H phases within the hydrated matter and (b) volume fractions of remaining
clinker, C-S-H solid and gel porosity in the paste.

257



20

25

30

35

40

45

50

55

60

65

0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.1 0.2 0.3 0.4 0.5

H
o
m
o
g
en
iz
ed
 I
n
d
en
ta
ti
o
n
 

M
o
d
u
lu
s 
M
  
  
, 
G
P
a

Water-Cement Ratio w/c

H
o
m
o
g
en
iz
ed
 I
n
d
en
ta
ti
o
n
 

H
ar
d
n
es
s 
H
  
  
, 
G
P
a

a)

b)

Water-Cement Ratio w/c

h
o
m

h
o
m

Figure 8-4: Effect of water-cement ratio on the macroproperties. (a) Homogenized indentation
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The dramatic effect of the water-cement ratio on the macroproperties is the consequence of

two combined effects:

• A decrease in water-cement ratio increases the volume fraction of remaining hydrated

clinker. Simply put, when less water is present, less clinker reacts. This observation can

be translated in terms of hydration degree ξ. Indeed, the initial volume fraction of clinker

is equal by definition to (1− p), where p is the initial porosity (see Section 6.4.2) and is

given by Equation (6.8). In addition, the actual volume fraction fCL of clinker can easily

be determined, recalling from Section 7.5.5, as the volume fraction of the fourth peak in a

four-Gaussian deconvolution of all the nanoindentations of the grid. The hydration degree

ξ = fCL/(1− p) is displayed in Figure 8-5 and, as expected, decreases with a decreasing

water-cement ratio.

• A decrease in water-to-cement ratio decreases the gel porosity in the paste, because it

decreases the mean porosity of the hydrates, as becomes evident from Figure 8-6. Close

to stoichiometric conditions (i.e., at w/c = 0.4), the mean porosity of the hydrates ap-

proaches 0.28, which is the porosity of the hydrates in the Powers and Brownyard model

(see Section 6.4.2). The decrease in porosity at lower water-to-cement ratios could be
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Figure 8-6: Effect of water-cement ratio w/c on mean porosity of hydration products.

due to the confinement imposed by the sub-stoichiometry. Indeed, the lower w/c, the

lower the initial porosity p (i.e., the space occupied by water), and consequently, since

C-S-H solid has to precipitate somewhere during the hydration process, it will do so in

the gel porosity and therefore decrease this gel porosity. Said otherwise, the decrease in

gel porosity at low w/c may well be due to geometric reasons.

8.2 Influence of Heat Treatment

This Section presents and discusses the results relative to the effect of a heat treatment on

the microstructure. The heat treatment consisted of a 48-hour-long exposure in an oven at

90 ◦C at 2 days after casting. The question which is here addressed is whether heat treatment

modifies the C-S-H particles properties and/or the packing density distributions? To answer

these questions, here we focus on the heat treated reference samples (PC-15-0-2, PC-20-0-2,

PC-25-0-2, PC-30-0-2, and PC-35-0-2, see Section 7.1.1), which we compare with the non heat

treated reference samples just considered in Section 8.1 (PC-15-0-0, PC-20-0-0, PC-30-0-0, PC-

35-0-0 and PC-40-0-0).
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8.2.1 Results

C-S-H Particle Properties

The C-S-H particle properties, back-calculated with the microstructure assessment technique

(see Section 7.4.3), are given in Appendix B. For the heat treated reference samples, hs = 2.96

GPa ±7.7%, which is almost identical with the value obtained for the non heat treated samples.

Moreover, cohesion cs = 0.423 GPa ±28.8% and friction coefficient αs = 0.174 ± 67.7% also

are very close to the cohesion and friction coefficient for the non heat treated samples. The

heat treatment here considered does not modify the elementary cohesive bonds and pressure

dependence of the C-S-H particles.

Properties of C-S-H Phases

The deconvolution process, when applied to the nanoindentations performed on the hydration

products, provides the phase properties (indentation modulus M , indentation hardness H and

packing density η) of the three identified C-S-H phases (Low-Density C-S-H, High-Density C-

S-H and Ultra-High-Density C(-S-)H). The deconvoluted phase properties, displayed in Figure

8-7, are:

• for Low-Density C-S-H: MLD = 19.9 GPa±12.3%, HLD = 0.49 GPa±41.0%, ηLD =

0.65± 5.9%

• for High-Density C-S-H: MHD = 29.4 GPa±8.6%, HHD = 0.81 GPa±17.9%, ηHD =

0.73± 3.1%

• for Ultra-High-Density C(-S-)H: MUHD = 42.8 GPa±5.4%, HUHD = 1.42 GPa±13.6%,

ηUHD = 0.83± 1.9%

For the heat treated samples considered, the phase properties of the three C-S-H phases

show some more variability than for the non heat treated samples. The most variability is

for the first peak, corresponding to LD C-S-H, but as we shall see soon, this peak has a low

volume fraction, which could explain why the deconvolution of its mean properties is somewhat

noisy. Moreover, on average, the values for the three peaks of the heat treated samples compare
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relatively well with the values for the three peaks of the non heat treated samples, from what

we conclude that the phase properties are not modified by the application of a heat treatment.

Volume Fractions

Although the phase properties do not change when applying a heat treatment, their volume

fractions do, as is observed on Figure 8-8. A comparison of Figures 8-8a and 8-8c shows that

the application of a heat treatment favors denser phases. such that, for all water-cement ratios

considered, LD C-S-H almost disappears when a heat treatment is applied. A comparison of

Figures 8-8b and 8-8d shows that this favoring of denser phases translates into a (rather small)

decrease in the total porosity of the sample. For water-cement ratios of 0.3 and 0.35, the

decrease in porosity is of about 10%. We note however that, for the lowest water-cement ratio

considered (w/c = 0.15), application of a heat treatment has no effect on the porosity.

8.2.2 Discussion

Figure 8-9 displays the estimated macroproperties of both heat treated and non heat treated

samples. For water-cement ratios w/c ≥ 0.3, a heat treatment increases the macroproperties,

by about 10% for the indentation modulus M , and by about 20% for the indentation hardness

H. In contrast, for water-cement ratios w/c ≤ 0.2, no beneficial effect of a heat treatment

is observed. Those observations are consistent with what is observed on the gel porosity (see

Figure 8-8).

A vanishing effect of heat treatment at a water-cement ratio w/c = 0.15 does make sense.

Indeed, even before application of a heat treatment, at such a low water-cement ratio, all C-S-H

present is in a Ultra-High-Density form, which already is the densest form of C-S-H identified.

Therefore, since the phase properties are invariant, the density of C-S-H in a sample with

w/c = 0.15 can not increase further.

To determine by what mechanism heat treatment modifies the microstructure, looking at

the hydration degree ξ may prove instructive. Figure 8-10 shows that application of a heat

treatment, on average, slightly increases the hydration degree. Said otherwise, when applying

a heat treatment, more clinker reacts. Such a reaction involves water, which has to come from

somewhere. Therefore, it may well be that a heat treatment releases water trapped in the
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Figure 8-7: Evidence of the invariance of the C-S-H phases properties in heat treated samples
with various water-cement ratios. (a) M − η scaling, (b) H − η scaling and (c) M −H scaling.
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nanoporosity of the C-S-H nanoparticles, which then becomes available for further hydration

of the remaining clinkers.

8.3 Influence of Silica Fumes

This Section presents and discusses the results relative to the effect of an addition of silica

fumes with and without heat treatment on the microstructure. Additions of silica fumes up to

32% of the mass of clinker are considered. As before, we seek to answer the question, whether

the C-S-H particles properties and/or the packing density distributions are modified by the

addition of silica fumes, with or without heat treatment. Here we focus on the non heat treated

samples with silica fumes (PC-20-8(SF)-0, PC-20-21(SF)-0, PC-20-24(SF)-0, PC-30-8(SF)-0,

PC-30-17(SF)-0, PC-30-21(SF)-0, PC-30-24(SF)-0, PC-30-32(SF)-0, PC-40-8(SF)-0 and PC-

40-21(SF)-0, see Section 7.1.1) and on the heat treated samples with silica fumes (PC-20-

8(SF)-2, PC-20-17(SF)-2, PC-20-24(SF)-2, PC-20-24(SF)-5, PC-20-32(SF)-2, PC-30-8(SF)-2,

PC-30-17(SF)-2, PC-30-24(SF)-2, PC-30-24(SF)-5 and PC-30-32(SF)-2).
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8.3.1 Results

C-S-H Particle Properties

The C-S-H particle properties, back-calculated with the microstructure assessment technique

(see Section 7.4.3), are given in Appendix B. As can be observed on Figure 8-11a, there is some

trend (albeit weakly correlated) that the contact hardness hs of the C-S-H particles increases

with the silica fumes—to—cement ratio. The correlation, however, is pretty weak, as Figure 8-

11(b-c) show for the cohesion cs and the friction coefficient αs. With some precautions, one may

suggest that silica fumes slightly modify the elementary cohesive bonds of the C-S-H particles

but not the pressure dependence.

Properties of C-S-H Phases

The deconvolution process, when applied to the nanoindentations performed on the hydration

products, provides the phase properties (indentation modulus M , indentation hardness H and

packing density η) of the three identified C-S-H phases (Low-Density C-S-H, High-Density C-

S-H and Ultra-High-Density C(-S-)H). The deconvoluted phase properties, displayed in Figure

8-12, are:

• for Low-Density C-S-H: MLD = 22.1 GPa±9.5%, HLD = 0.64 GPa±20.7%, ηLD = 0.66±
3.5%

• for High-Density C-S-H: MHD = 31.6 GPa±8.6%, HHD = 1.04 GPa±20.1%, ηHD =

0.75± 3.7%

• for Ultra-High-Density C(-S-)H: MUHD = 45.1 GPa±8.1%, HUHD = 1.77 GPa±17.4%,

ηUHD = 0.84± 3.0%

The coefficients of variations of the indentation modulus M and of the packing density η of

each phase compare well with those observed on samples without silica fumes in Sections 8.1

and 8.2, and so do their mean values. In contrast, the mean value and coefficient of variation of

the indentation hardness of the three hydration products are significantly greater than those of

samples without silica fumes. The reason for that is readily understood from an observation of

Figure 8-12: An addition of silica fumes increases the hardness of the hydration products, while
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letting their indentation moduli and packing densities remain unchanged. Since an addition of

silica fumes has no effect on the indentation moduli of the hydration products, it is reasonable

to consider that neither does it modify the indentation modulus ms of the C-S-H particles.

This justifies a posteriori the relevance of having fixed ms = 63.5 GPa (see Section 7.4.3).

Porosity and Volume Fractions

Figure 8-13 displays the mean porosity of the hydration products versus the amount of added

silica fumes, for samples with or without heat treatment, and various water-cement ratios. The

effect of silica fumes on the mean porosity clearly depends on the water-to-cement ratio. The

lower the water-to-cement ratio, the more pronounced the beneficial effect of silica fumes. In

conditions close to stoichiometry (i.e., at w/c = 0.4), silica fumes have no effect. When silica

fumes are used, Figure 8-13 shows that a heat treatment does not decrease further the porosity.

For non heat treated samples, the volume fractions of the three hydration products in the

hydrated matter are displayed in Figure 8-14a. Surprisingly, when adding silica fumes, even

though the hydration products become, on average, denser (see Figure 8-13), the volume fraction

of the densest hydration products (UHD C(-S-)H) decreases (see Figure 8-14b). This can be

explained by the observed increase in the volume fraction of HD C(-S-)H (see Figure 8-14c),

which must overcompensate for the disappearance of UHD C(-S-)H.

For heat treated samples, an interesting behavior also is observed (see Figure 8-15): Once

8% of silica fumes are added, the volume fraction of UHD C(-S-)H drops, and then remains

unchanged when adding more silica fumes. We discuss next what those observations tell us

about the mechanisms by which silica fumes act, and about the nature of UHD C(-S-)H.

8.3.2 Discussion

To better understand the effect of silica fumes, we need first to understand what silica fumes

are. Silica fumes are an industrial by-product, obtained when producing silicon or its alloys

[125]. The silica fume particles are very small spheres, with an average diameter of about 100

nm (see Fig. 8-16). They are mostly made of amorphous reactive silica and thus are known to

have a pozzolanic effect: They react with Portlandite to produce C-S-H (see Eq. (7.2)).

The decrease in the volume fraction of UHD C(-S-)H when adding silica fumes to non heat
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Figure 8-13: Effect of silica fumes on the mean porosity of the hydration products.

treated samples (see Figure 8-14) strongly suggests that UHD C(-S-)H contains C-S-H. At the

same time, Figure 8-15 shows that a portion of UHD C(-S-)H (about 20% of the volume of all

hydrates) is insensitive to any addition of silica fumes, which strongly suggests that those 20%

are not Portlandite. This apparent contradictions between two observations can be resolved,

by considering that what we identify as UHD C(-S-)H is in fact a mix of Portlandite (CH) and

C-S-H! Those two distinct materials may have close mechanical properties, which prevents from

deconvoluting one from the other. Moreover, this also would explain why Constantinides and

Ulm [57] identified this phase as Portlandite, while Mondal et al. [129] identified it as C-S-H:

They may well be both right!

A comparison of the cement samples with the C3S samples (see Section 7.1.1) also provides

valuable information on the UHD C(-S-)H phase. As can be observed in Figure 8-17, the main

hydration product in the C3S pastes has the same properties as UHD C(-S-)H in regular cement

pastes. Said otherwise, the hydration process of a clinker made of pure C3S provides preferably

UHD C(-S-)H: The composition of the clinker plays a role on the packing density distributions

and, ultimately, on the microstructure.

On two of the tested samples (PC-20-24(SF)-2 and PC-30-8(SF)-2), we aim to get a better

understanding of how UHD C(-S-)H is spatially distributed. To do so, on each of those samples,

900 nanoindentations are performed, with the load profile described in Section 7.4.1, but with a
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Figure 8-16: Scanning electron microscope micrograph of silica fumes (from [106]).
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spacing δ = 3 µm between nanoindentations. After deconvolution of the 900 nanoindentations,

to each phase (LD C-S-H, HD C-S-H, UHD C(-S-)H and clinker) is associated an interval of

measured indentation moduli. By doing so, each specific point on the grid of nanoindentations

can be associated with the phase on which the nanoindentation was performed. Such a technique

provides a mechanical mapping of the indented surface. The results of this mapping for the

two samples considered are displayed in Figure 8-18. Both figures 8-18a and 8-18b show that

UHD C(-S-)H can be found close to the clinker grain. In addition, Figure 8-18b also shows that

some areas of UHD C(-S-)H can tentatively be observed far from the clinker grains. But this

observation is not conclusive, since a grain of clinker could nevertheless be close but invisible

just below the surface. In conclusion of this short study, it is certain that UHD C(-S-)H can be

found close to the clinker grains. But it is not possible to conclude, whether or not it can also

be found far from them.

The macroproperties of the pastes, as estimated by the grid of nanoindentations with the

tools presented in Section 7.4.4 are displayed in Figure 8-19. The increase in the homogenized

indentation hardness Hhom is much more pronounced than that of the homogenized indentation

modulus Mhom, which can be attributed to the effect of silica fumes on the strength properties

of the C-S-H particles.

In summary, silica fumes have multiple effects on the cement paste:

• Silica fumes have some tendency to increase the strength properties of the C-S-H particles,

but not their elastic properties. A change in mechanical properties could a posteriori be

expected, since, by adding silica fumes, i.e., Si, the Ca/Si ratio of C-S-H is decreased, and

therefore its chemical composition is modified.

• Silica fumes modify the packing density distributions by two competing effects. On one

hand, the pozzolanic reaction consumes Portlandite, mechanically equivalent to the dens-

est of the hydration products, which therefore tends to lower the apparent packing density

of the hydrates. On the other hand, the pozzolanic reaction also produces new hydrates,

which therefore tends to increase the packing density.
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Figure 8-18: Mechanical mapping of (a) PC-20-24(SF)-2 and (b) PC-30-8(SF)-2. UHD C(-S-)H
can be found both close to the clinker grains and apparently far from them.
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8.4 Influence of Calcareous Filler

This Section presents and discusses the results relative to the effect of calcareous filler on the

microstructure. Additions of a calcareous filler, ground in two different ways, by up to 25% of

the mass of clinker are considered. The question we want to address is whether calcareous filler

modifies the C-S-H particles properties and/or the packing density distributions. To answer

this question, here we focus on the samples with calcareous filler of type 1 ( PC-20-10(CF1)-0,

PC-20-25(CF1)-0, PC-30-10(CF1)-0, PC-30-25(CF1)-0, PC-40-10(CF1)-0 and PC-40-25(CF1)-

0, see Section 7.1.1) and of type 2 (PC-20-10(CF2)-0, PC-20-25(CF2)-0, PC-30-10(CF2)-0,

PC-30-25(CF2)-0, PC-40-10(CF2)-0 and PC-40-25(CF2)-0).

8.4.1 Results

C-S-H Particle Properties

The C-S-H particle properties, back-calculated with the microstructure assessment technique

(see Section 7.4.3), are given in Appendix B. For both types of filler, the contact hardness

shows no trend with the amount of added filler (see Figure 8-20). On average, on all samples

with calcareous filler of type 1, we have: hs = 3.18 GPa ±11.7%, cs = 0.443 GPa ±17.5% and

αs = 0.175 ± 53.8%. On average, on all samples with calcareous filler of type 2, we obtain

hs = 3.13 GPa ±11.7%, cs = 0.428 GPa ±19.2% and αs = 0.182 ± 65.4%. Therefore, both

fillers have a negligible effect on the strength properties of the C-S-H particles.

Properties of C-S-H Phases

The deconvolution process, when applied to the nanoindentations performed on the hydration

products, provides the phase properties (indentation modulus M , indentation hardness H and

packing density η) of the three identified C-S-H phases (Low-Density C-S-H, High-Density C-

S-H and Ultra-High-Density C(-S-)H). The deconvoluted phase properties of all samples with

filler of type 1 are:

• for Low-Density C-S-H: MLD = 20.6 GPa±9.2%, HLD = 0.57 GPa±6.0%, ηLD = 0.66±
2.5%
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Figure 8-20: Effect of calcareous filler on the contact hardness hs of the C-S-H particles.

• for High-Density C-S-H: MHD = 31.5 GPa±11.8%, HHD = 0.91 GPa±8.5%, ηHD =

0.75± 4.1%

• for Ultra-High-Density C(-S-)H: MUHD = 42.9 GPa±5.1%, HUHD = 1.49 GPa±8.1%,

ηUHD = 0.83± 4.4%

The deconvoluted phase properties of all samples with filler of type 2 are:

• for Low-Density C-S-H: MLD = 20.5 GPa±10.6%, HLD = 0.59 GPa±19.6%, ηLD =

0.66± 2.8%

• for High-Density C-S-H: MHD = 32.8 GPa±12.0%, HHD = 1.01 GPa±16.3%, ηHD =

0.76± 4.1%

• for Ultra-High-Density C(-S-)H: MUHD = 45.2 GPa±9.9%, HUHD = 1.64 GPa±10.8%,

ηUHD = 0.84± 3.9%

A comparison clearly shows that the two types of C-S-H yield very similar values of the

phase properties. Moreover, those values are in very good agreement with those obtained on

the reference non heat treated samples (see Section 8.1.1). In summary, an addition of calcareous

filler of either type has no effect on the phase properties of the three hydration products.
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Volume Fractions

Figure 8-21 displays the volume fraction of the hydration products in the hydrated matter.

The two types of filler yield very similar results and tend to decrease the volume fraction of LD

C-S-H, while increasing that of UHD C(-S-)H. This densification translates into a decrease in

the mean porosity of the hydration products (see Figure 8-22). The two types of filler have an

identical effect on the microstructure.

8.4.2 Discussion

Calcareous filler results from the grinding of calcareous stones, such as limestone, and contains

mostly calcite CaCO3. Calcareous filler is used for economic reasons, since a substitution of

calcareous filler to cement proves to be energy- and money-saving [95]. The question of the

reactivity of the filler has been addressed by several researchers, but there is no agreement as

to what extent calcite participates in the hydration process. Although it was noted that calcite

may react with the tricalcium aluminate C3A in the clinker [95], there is also experimental

evidence that calcite is mostly non reactive [169], such that the Portland Cement Association

recommends limestone in practice to be considered as an inert material [86]. Nevertheless,

Matschei and Lohtenbach showed very recently that calcite does indeed participate in the

hydration process and that the amount of reactive calcite depends on the amount of initial

solid Al2O3 and SO3 in the cement [120] (see Figure 8-23). From an initial solid SO3 = 2.13

content, and a sulfate/alumina ratio S03/Al2O3 = 0.68 from Table 7.1, their results suggest

that, of the added calcareous filler, only about 1% to 2% of the weight of the cement is reactive.

Since we here consider additions of calcareous filler in amounts of 10% and 25% of the weight

of cement, most of this calcite is likely to be non reactive. The non-reactivity of the filler could

explain why the two types of filler, although ground differently, and therefore possess different

specific surface areas, yield the same effect.

But if the filler is non-reactive, why do not we identify it, by nanoindentation, as one the

phases in the paste? One reason may be the size of the filler. As explained in Section 7.1.1,

the fillers used in this study have a sub-micrometric size. By comparison with the depth of the

nanoindentations (hmax ≃ 200 nm), it may well be that the scale separability condition (4.1)

is not satisfied. If it were indeed the case, each nanoindentation performed on a filler would
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Figure 8-21: Effect of calcareous filler on the volume fractions of the hydration products. (a)
Calcareous filler of type 1 and (b) calcareous filler of type 2.
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Figure 8-22: Effect of an addition of calcareous filler on the mean porosity of the hydration
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provide not the mechanical property of the filler itself, but a composite response of the filler

and of what is around it, i.e., hydrated matter. Here this hypothesis is tested.

The filler, of indentation modulus MCF , is assumed to be embedded in the hydrated matter

(of average indentation modulus Mh). The nanoindentations are assumed to ‘sense’ only the

composite response Mcomp of those two materials. Here we estimate Mcomp and compare it

with experimental nanoindentation results

A cement is prepared by mixing a mass MCL of clinker with water, at a water-cement

ratio w/c. After hydration, the volume fraction of remaining clinker is fCL. The volume Vh of

hydrated matter is therefore given by:

Vh = (1− fCL)

(
1

ρCL
+w/c

)
MCL (8.1)

where ρCL = 3, 150 kg/m3 is the density of the clinker [38]. To this cement paste is added

an amount x of calcareous filler, where x is the calcareous filler-to-cement mass ratio. This

addition corresponds to a volume VCL of clinker:

VCF =
x

ρCF
MCL (8.2)
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where ρCF = 2, 700 kg/m3 is the density of calcite [52]. From Equations (8.1) and (8.2), the

volume fractions of filler and hydrated matter in the filler-hydrated matter composite can easily

be calculated, and depend on x, w/c and fCL. Knowing those respective volumes fractions,

the homogenized response of the filler-hydrated matter composite can be estimated, with the

homogenization techniques introduced in Section 4.2.2. More specifically, with the filler being

embedded in the hydrated matter, the homogenized indentation modulus Mcomp of the filler-

hydrated matter composite can be estimated with a Mori-Tanaka scheme (Equation (4.29)):

M comp =

VhMh +
VCFMCF

1 +
1

2

(
MCF

Mh
− 1

)

Vh +
VCF

1 +
1

2

(
MCF

Mh
− 1

)
(8.3)

whereMh is the mean indentation modulus of the hydrated matter with no filler embedded, and

MCF is the indentation modulus of the filler. The hypothesis of a non-reactive filler embedded

in the hydration products is tested by comparing M comp with the experimental results. The

mean indentation modulus of the hydrated matter is obtained as the mean value of the first peak

of a two-Gaussian deconvolution of a grid of nanoindentations. The results of the comparison

are displayed in Figure 8-24 for an indentation modulus MCF = 100 GPa of the filler. For this

stiffness of the filler, the hypothesis of a non reactive filler embedded in the hydration products

captures remarkably well the experimental data.

A value MCF = 100 GPa proves to be very close to the measured value for calcite (MCF =

95.3 GPa [40]), which validates the hypothesis. Said otherwise, the effect of calcareous fillers

can be explained by a simple mechanical reinforcement of the hydrated matter.

8.5 Predictive Composition-Microstructure Model

This Section aims to develop a predictive model to capture the effect of mix proportions and

processing on the microstructure for sub-stoichiometric cement pastes. Since the effect of cal-

careous filler is mainly not on the microstructure, but a mere mechanical reinforcement, calcare-

ous filler is not included in this model. Therefore, we aim to develop a model which captures
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Figure 8-24: Indentation modulus M of the hydrated matter versus the amount of added
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the influence of sub-stoichiometry, silica fumes and heat treatment.

8.5.1 Model Development and Calibration

The model is constructed very similarly to Powers’ model (see Section 6.4.2). Here we neglect

chemical shrinkage and capillary porosity, so that the paste is considered to be made only of

clinker and a porous C-S-H matrix:

Vcl = (1− p)(1− ξ)
VCSH = 1− (1− p)(1− ξ)

(8.4)

where Vcl is the volume fraction of clinker, VCSH is the volume fraction of the porous C-S-H

matrix, ξ is the hydration degree (see Equation 6.7) and p is the initial porosity, i.e., the space

initially occupied by water (see Equation 6.8). We note ϕ0 as the average porosity of the C-S-H;

that is:

ϕ0 = 1− ηVCSH (8.5)

The hydration degree ξ depends on the water-cement ratio w/c. Although heat treatment
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has a slight effect on the hydration degree (see Figure 8-10), this effect is rather small and here

neglected. Moreover, since the pozzolanic reaction which characterizes the effect of silica fumes

(see Section 8.3.2) does not involve clinker, we consider that the hydration degree is a function

of the water-cement ratio w/c only and is sought for in the simple form:

ξ = ξ(w/c) = x1 × (w/c) + x2 (8.6)

In contrast, the mean porosity of C-S-H, ϕ0, depends on the water-cement ratio w/c, the

amount of added silica fumes (SF/c), and the heat treatment. Noting that, in stoichiometric

conditions, the mean porosity ϕ0 = 0.28 of Powers model is retrieved (see Figure 8-6), and

noting that the effect of silica fumes depends on the stoichiometry (see Figure 8-13), the mean

porosity ϕ0 is sought for in the form:

ϕ0 = 0.28− x3(x4 − (w/c))− x5(SF/c)(x6 −w/c) (8.7)

Since the effect of a heat treatment depends on the stoichiometry, x3 will be different for

heat treated and non heat treated samples. Likewise, since the effect of silica fumes depends

on the heat treatment, x5 will be different for heat treated and non heat treated samples.

The model is fit on all samples heat treated or not, with or without added silica fumes. The

equation for the hydration degree (8.6) is fit to the hydration degrees estimated from the grid

of nanoindentations with Equation (7.17). The result of the fit is:

ξ = 0.582× (w/c) + 0.434 (8.8)

where the quality of this fit can be observed on Figure 8-25 for the samples with no additions

of silica fumes.

The equation for the mean porosity of C-S-H (8.7) is fit to the mean porosity estimated

from the packing density distributions obtained with the microstructure assessment technique

(see Section 7.4.3). The coefficients x3 and x5 are allowed to differ for heat treated and non
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Figure 8-25: Results of the fit of the hydration degree ξ for samples without silica fumes.

heat treated samples. The result of this fit is:

ϕ0 = 0.28− a(0.442− (w/c))− b(SF/c)(0.400−w/c) (8.9)

where:

a =





0.197 if no heat treatment

0.246 if heat treatment
(8.10)

b =





0.905 if no heat treatment

0.701 if heat treatment

The quality of this fit can be observed on Figure 8-26.

8.5.2 Model Validation

The developed model enables to estimate, for given mix proportions (w/c, SF/c) and process-

ing (heat treatment or no heat treatment), the volume fractions of clinker VCL, of C-S-H solid

(1 − ϕ0)VCSH , and the gel porosity ϕ0VCSH . Therefore, the model can be used to estimate

macroproperties. Here the model is validated by comparing the homogenized indentation mod-

ulus Mhom it provides with the one obtained from a grid of nanoindentations.
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The indentation modulus ms of the C-S-H solid being known (ms = 63.5 GPa, see Section

7.4.3), the indentation modulus MCSH of the C-S-H phase can be estimated with Equation

(4.37):

MCSH = ms(1− 2ϕ0) (8.11)

The clinker (of indentation modulusMCL = 135 GPa [193]) being embedded in the hydrated

matter, the homogenized indentation modulus can be estimated with a Mori-Tanaka scheme

(4.29):

Mhom =

VCSHMCSH +
VCLMCL

1 +
1

2

(
MCL

MCSH
− 1

)

VCSH +
VCSH

1 +
1

2

(
MCL

MCSH
− 1

)
(8.12)

A comparison of the homogenized indentation modulus Mhom estimated by the model de-

veloped in Section 8.5.1, with the homogenized indentation modulusMhom obtained from grids

of nanoindentations, for all samples with or without heat treatment and with or without

silica fumes, is displayed in Figure 8-27. But for the lowest water-cement ratio considered

(w/c = 0.15), the model developed is in excellent an agreement with experimental values, the

average error on Mhom being only of 7.7%.

8.6 Chapter Summary

This Chapter focused on the experimental investigation of the influence of mix proportions

and processing on the microstructure. Sub-stoichiometry, heat treatment, additions of silica

fumes and calcareous filler were considered successively. The following mechanisms by which

mix proportions and processing affect the microstructure are suggested:

• Heat treatment releases water trapped in the nanoporosity of the C-S-H nanoparticles,

which then becomes available for further hydration of the remaining clinkers.

• Silica fumes do not modify the pressure dependence of the C-S-H particles but may modify

their elementary cohesive bonds, thus increasing their contact hardness. In addition, silica
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Figure 8-27: Homogenized indentation modulus predicted by the model versus homogenized
indentation modulus obtained from grids of nanoindentations.

fumes produce more C-S-H by reacting with Portlandite (pozzolanic reaction).

• Calcareous filler is mostly non reactive (for the type of clinker and the amounts of filler

here considered) and acts by mere mechanical reinforcement of the hydrated matter.

In addition, the experimental investigation allowed us to identify the UHD C(-S-)H phase as

a mix of Portlandite (CH) and C-S-H. Finally, a predictive model was developed which enables,

for given mix proportions and processing, to calculate the volume fractions of clinker and C-

S-H solid, as well as the gel porosity in the paste. This model was calibrated and validated

for water-cement ratios 0.2 ≤ w/c ≤ 0.4, for additions of silica fumes up to 32% (in mass of

clinker) and for application of a heat treatment (48-hour-long placement in an oven at 90 ◦C at

2 days after casting).

The characterization of the microstructure was performed by assessing the elastic and

strength indentation properties of the paste. Next, the investigation is extended to other

mechanical properties of the paste, namely the creep properties, and the link between creep

properties and microstructure is assessed.
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Chapter 9

Link Between Microstructure and

Creep Properties for Cementitious

Materials

This Chapter carries the implementation of the Materials Science paradigm for cementitious

materials further still. In contrast to Chapter 8 in which the emphasis was on the link between

mix proportions and microstructure, here the emphasis is on the link between microstructure

and mechanical performance. More specifically the focus of this Chapter is the experimental

investigation of the link between microstructure and creep properties. The indentation analy-

sis tools developed in Chapter 3 for the assessment of viscous properties and the statistical

indentation techniques developed to probe the microstructure of cementitious materials (see

Chapters 4, 5 and 7) provide a convenient framework for such an investigation.

The experimental investigation requires the statistical indentation techniques developed in

Chapter 7 to be slightly modified to allow for the assessment of creep properties. Once the

methods are defined the experimental results are presented. A comparison with other creep

data on cementitious materials is then drawn to gain a better understanding of the significance

of our results. The last Section discusses mechanisms at the origin of creep of C-S-H in the

context of results from nanoindentation and macroscopic experiments on concrete and other

geomaterials.
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Sample Name w/c [%] SF/c(1) [%] CF/c(2) [%] Heat treatment

PC-15-0-0 15 none
PC-20-0-2 20 at 2 days
PC-20-24(SF)-0 20 24 none
PC-20-32(SF)-2 20 32 at 2 days
PC-30-0-0 30 none
PC-30-0-5 30 at 5 days
PC-30-22(SF)-0 30 22 none
PC-30-25(CF1)-0 30 25 none
PC-40-0-0 40 none

Table 9.1: List of cement pastes tested for the experimental investigation of creep properties of
C-S-H.
(1) Weight of silica fumes (SF), in percent of the weight of cement.
(2) Weight of calcareous filler (CF), in percent of the weight of cement.

9.1 Materials and Methods

This Section focuses on defining the materials and methods for the experimental investigation

of the creep properties of C-S-H and their link with the microstructure.

9.1.1 Materials

The experimental investigation of the creep properties will be performed on a subset of the set

of samples tested for the assessment of the influence of mix proportions and processing on the

microstructure (see Chapter 8). Those samples were presented in Section 7.1.1. The subset is

chosen such to be representative of all possible mix proportions (w/c ratio, additions of silica

fumes and calcareous filler) and processings (heat treatment). Following the denomination

introduced in Section 7.1.1, the samples tested for the experimental investigation of creep

properties are given in Table 9.1.

9.1.2 Methods

So that statistical indentation techniques can be used, a 20 by 20 grid of 400 Berkovich nanoin-

dentations will be performed on each sample with the Nano-hardness tester of CSM Instruments.

To ensure that, on average, each nanoindentation provides the properties of an individual phase

of the paste, the maximum load Pmax of the trapezoidal load case is fixed to Pmax = 2 mN (see

Section 7.4.1).
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Now the loading profile must be defined to allow the measurement of creep properties as well

as the assessment of the microstructure for the nanoindentations performed on the hydration

products. For creep properties to be measured, the holding phase should be reasonably long

(at least a few minutes, see the conclusions of Chapter 3). In contrast, the assessment of the

microstructure is based on the measurement of the indentation modulusM and the indentation

hardnessH (see Section 7.4.3). For the indentation hardness to be representative of the strength

properties, the holding phase should be as short as possible (see Section 2.4.3). An experimental

study performed in Section 7.4.1 showed that, for equal durations τL of the loading phase and

τU of the unloading phase τL = τU = 10 s, the measured indentation hardness decreases by

about 10% over a creep phase of 180 s, which is acceptable. Therefore the duration τH of the

creep (holding) phase is fixed to τH = 180 s.

From the very definition of the indentation hardness (2.57) the increase in contact radius

a(t) over the 180-s holding phase is estimated to about 5%, which is negligible. Therefore,

for each nanoindentation the rate expression L̇(t) of the contact creep compliance is calculated

with Equation (3.69):

L̇(t) =
2aU ḣ(t)

Pmax
(9.1)

where aU is the contact radius at the onset of unloading. aU is calculated with the Oliver and

Pharr method (see Section 2.3.2) and thus the indentation modulus M and the indentation

hardness H. After integration Equation (9.1) can be rewritten as:

L(t) =
2aU∆h(t)

Pmax
+ c1 (9.2)

where ∆h(t) is the change in depth during the creep phase and c1 is a constant.

9.2 Experimental Results

This Section presents the results of the experimental investigation of the creep behavior of

C-S-H by nanoindentations and of the creep behavior’s link with the microstructure.
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9.2.1 Logarithmic Creep of C-S-H and Contact Creep Modulus

On average over all samples the noise in the depth measurement during the 3-minute creep

phase is 0.39 nm ± 0.09 nm. The change in depth ∆h(t) over the creep phase is fit with a

function of the form:

∆h(t) = x1 ln(x2t+ 1) + x3t+ x4 (9.3)

The fit is performed with a non linear least-squares solver in Matlab. The average error of this fit

is 0.48 nm ± 0.09 nm, which is slightly above (but very close to) the noise level. Said otherwise,

within the noise of the measurement, the fitted function is in almost perfect agreement with

the experimental data (see Figure 9-1). The coefficient x4 = 1.27 nm ±1.92 nm captures any

inaccuracy in the determination of the beginning of the creep phase. The coefficient x3 of

the linear term has a correlation R2 = 0.0006 with M and R2 = 0.0050 with H (see Figure

9-2). From those very low coefficients of correlation we conclude that x3 is random from one

nanoindentation to the other and is not material-related. The linear term of the fitting function

is thus interpreted as drift of the indentation apparatus. The only material-related term in the

fitting function is the logarithmic one, from what we infer that the creep of C-S-H is logarithmic

with regard to time.

The characteristic viscous time 1/x2 of the creep phenomenon is displayed in Figure 9-3.

This characteristic time shows a weak correlation with the indentation modulus (R2 = 0.042)

and with the indentation hardness (R2 = 0.064). The characteristic viscous time is 1/x2 = 1.66

s±4.76 s on average.

We also attempt a power fit of the form ∆h(t) = x1t
x2+x3t+x4. Such a fit also provides very

satisfactory results (see Figure 9-1), the average error 0.59 nm ± 0.25 nm being only slightly

greater than that obtained with the logarithmic fit. The power exponent is x2 = 0.298±21.2%.

For a power-like time dependence of the creep phenomenon the long-term creep compliance

is given by L̇(t) = btx2−1 and requires thus the knowledge of two parameters. In contrast, for a

logarithmic time-dependence of the creep phenomenon the long-term creep compliance rate is

given by

L̇(t) =
1

Ct
; where: C =

M

2aUx1
(9.4)

and requires thus the knowledge of one parameter only. By working with the logarithmic ex-
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Figure 9-1: Examples of change in depth ∆h(t) versus time curve during the creep phase and
corresponding logarithmic and power fits (a) on a linear scale and (b) on a logarithmic scale.
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ness H for sample PC-15-0-0.
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pression of the contact creep compliance, all information regarding the long-term creep behavior

is therefore condensed in the parameter C only. This parameter is homogeneous to a modulus

and is named the contact creep modulus.

9.2.2 Link Between Creep and Microstructure

This Section focuses on assessing the link between microstructure (packing density) and creep

properties. In addition to the indentation modulusM and indentation hardness H each nanoin-

dentation also provides the contact creep modulus C. Making use of the microstructure assess-

ment technique (see Section 7.4.3) the packing density distribution in the hydration products

is determined. Therefore, each nanoindentation performed on the hydration products now

provides four parameters: M , H, C and η. Out of those four parameters the first three are

mechanical properties of the material and one describes the microstructure.

For each tested sample, for all nanoindentations performed on the hydrated matter M ,

H, C and η are deconvoluted in a coupled manner (see Section 5.2.3) using a three-Gaussian

deconvolution. The results of the deconvolution are given in Tables 9.2, 9.3 and 9.4. As expected

the indentation moduliM , indentation hardnesses H and packing densities η of the three peaks

are in good agreement with those found previously for LD C-S-H, HD C-S-H and UHD C(-S-)H.

But, in addition this deconvolution now provides the contact creep modulus of each phase. LD

C-S-H, HD C-S-H and UHD C-S-H have for contact creep modulus:

CLD = 112.2± 23.3 GPa (9.5)

CHD = 182.5± 43.7 GPa (9.6)

CUHD = 342.6± 85.0 GPa (9.7)

With a coefficient of variation less than 25% the creep modulus of the three C-S-H phases does

not vary much from sample to sample.

Figure 9-4 displays the deconvoluted contact creep modulus C versus the deconvoluted

indentation modulus M and hardness H. In both the C −M plane and the C − H plane

data points align nicely along a master curve. The scaling relation between the contact creep

modulus C on one hand and M and H on the other hand does not depend on the water-to-
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M H C η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-15-0-0 25.30 6.22 0.594 0.193 110.22 22.10 0.698 0.046 0.148
PC-20-0-2 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 0.000
PC-20-24(SF)-0 24.68 5.58 0.867 0.044 112.03 31.63 0.640 0.099 0.032
PC-20-32(SF)-2 24.81 3.68 0.678 0.250 148.61 24.89 0.709 0.021 0.110
PC-30-0-0 19.47 3.78 0.454 0.161 91.60 27.62 0.654 0.036 0.319
PC-30-0-5 21.52 3.45 0.586 0.168 134.04 26.80 0.666 0.028 0.104
PC-30-22(SF)-0 21.56 3.81 0.498 0.148 97.28 3.27 0.681 0.033 0.019
PC-30-25(CF1)-0 18.74 7.75 0.620 0.157 103.62 25.96 0.648 0.072 0.056
PC-40-0-0 23.03 4.48 0.561 0.121 100.38 24.37 0.685 0.033 0.510

average 22.39 4.84 0.607 0.155 112.22 23.33 0.673 0.046 0.162

Table 9.2: Results of the 3-peak deconvolution of the indentation modulus M , the indentation
hardness H, the contact creep modulus C and the packing density η: first peak, representing
the low density (LD) C-S-H phase.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.

M H C η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-15-0-0 39.21 6.00 1.042 0.255 176.11 43.78 0.810 0.043 0.583
PC-20-0-2 37.15 5.40 1.067 0.219 197.32 48.15 0.798 0.041 0.688
PC-20-24(SF)-0 39.17 5.91 1.169 0.258 210.04 60.51 0.808 0.038 0.721
PC-20-32(SF)-2 37.77 5.00 1.271 0.299 225.74 52.24 0.801 0.035 0.693
PC-30-0-0 28.72 5.47 0.834 0.201 165.84 38.69 0.732 0.041 0.451
PC-30-22(SF)-0 33.65 5.73 1.035 0.223 207.32 46.49 0.769 0.041 0.652
PC-30-25(CF1)-0 31.48 5.18 0.794 0.148 132.11 31.55 0.748 0.035 0.770
PC-30-0-5 34.86 4.67 0.966 0.189 166.55 35.77 0.773 0.032 0.514
PC-40-0-0 31.35 3.84 0.812 0.131 161.26 36.52 0.744 0.026 0.299

average 34.82 5.25 0.999 0.214 182.48 43.74 0.776 0.037 0.597

Table 9.3: Results of the 3-peak deconvolution of the indentation modulus M , the indentation
hardness H, the contact creep modulus C and the packing density η : second peak, representing
the high density (HD) C-S-H phase.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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M H C η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-15-0-0 53.84 5.48 1.667 0.370 341.55 92.00 0.898 0.045 0.269
PC-20-0-2 50.87 5.66 1.643 0.357 344.55 91.25 0.886 0.047 0.311
PC-20-24(SF)-0 50.48 5.40 1.944 0.455 416.50 80.20 0.893 0.047 0.247
PC-20-32(SF)-2 49.79 7.02 2.014 0.445 414.37 70.23 0.876 0.041 0.197
PC-30-0-0 43.13 8.31 1.393 0.334 318.69 81.37 0.816 0.043 0.230
PC-30-22(SF)-0 46.97 7.60 1.696 0.439 359.57 55.55 0.860 0.050 0.245
PC-30-25(CF1)-0 44.39 7.73 1.354 0.391 258.98 65.62 0.841 0.058 0.210
PC-30-0-5 45.57 6.04 1.533 0.325 286.19 83.87 0.861 0.040 0.430
PC-40-0-0 42.77 6.45 1.379 0.257 343.14 145.36 0.834 0.040 0.191

average 47.53 6.63 1.625 0.375 342.61 85.05 0.863 0.046 0.259

Table 9.4: Results of the 3-peak deconvolution of the indentation modulus M , the indentation
hardness H, the contact creep modulus C and the packing density η: third peak, representing
the ultra-high density (UHD) C-(S-)H phase.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.

cement ratio, w/c, heat treatment or admixtures. Fitting a power function to the C versus

M relation yields C = 1.355M1.410 (where both C and M are expressed in GPa) with a

correlation R2 = 0.889. Fitting a power function to the M versus C relation yields a slightly

different relation C = 0.7302M1.5858 (where both C and M are expressed in GPa) with the

same correlation R2 = 0.889. Interestingly, a linear scaling is found between the contact creep

compliance and the indentation hardness: C = 200.8H with a correlation R2 = 0.936.

Reworking the data in the C − η plane yields Figure 9-5. The contact creep modulus C

scales in a unique manner with the packing density η. A power function fit to the data yields

C = 1128.5(η − 0.5)1.378 where C is expressed in GPa. Fitting a power function to the η − 0.5

versus C relation yields a slightly different relation C = 1588.9(η−0.5)1.597. The unique scaling

between contact creep modulus and packing density proves that the creep behavior the hydrated

phase of cementitious materials is fully determined by its packing density. Mix design has an

influence on the packing density distribution but has no influence on the scaling between contact

creep modulus and packing density.
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Figure 9-4: Deconvoluted indentation creep modulus C (a) versus the deconvoluted indentation
modulus M and (b) versus the deconvoluted indentation hardness H for indents performed on
the products of hydration.
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Figure 9-5: Deconvoluted contact creep modulus C versus deconvoluted packing density η.

9.3 Discussion: Comparison with Other Creep Data

This Section discusses the results of the experimental investigation with respect to results

gathered with another geometry of indenter, at another indentation load, or at another scale.

9.3.1 Creep Data from Cube Corner Indentation

In this Section we verify whether the creep behavior of C-S-H is linear with regard to the

applied stress by using an indenter probe of different geometry. If the creep behavior is linear

with regard to stresses (which was indeed assumed for all derivations in Chapter 3) the measured

creep properties should not depend on the shape of the indenter (see Chapter 3). A Cube Corner

indenter (equivalent half-cone angle θ = 42.24o) is much sharper than a Berkovich indenter.

Although the stresses below a conical indenter are not homogeneous, Tabor [174] showed that

it is possible to introduce a ‘representative strain’ characterizing the strain distributions in the

indented material. Whereas the representative strain below a Berkovich indenter is of 10%, the

representative strain below a Cube Corner indenter is of 25% [6]. Therefore, below a Berkovich

and a Cube Corner probe the material is solicited at two very different strain levels.

Grids of nanoindentations are performed on samples PC-20-24(SF)-2, PC-20-32(SF)-2 and
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PC-30-0-5 with a Cube Corner indenter. The maximum load is Pmax = 0.5 mN so that the

maximum depths hmax ≃ 260 nm ±90 nm are close to those obtained with Pmax = 2 mN

for Berkovich indentation. The issue with an indenter as sharp as a Cube Corner is that the

material ‘piles-up’, which leads to an erroneous estimation of the projected area of contact by

the Oliver and Pharr method (see Section 2.3.2). Consequently, a direct application of the

Oliver and Pharr method yields an erroneous contact radius ameas, which leads to an erroneous

determination of indentation modulus Mmeas, indentation hardness Hmeas and contact creep

modulus Cmeas. For geomaterials, however, Constantinides and Ulm [57] showed that if the

contact radius is correctly measured (e.g., optically for deep indents) the indentation modulus

measured by Berkovich and Cube Corner indentation are identical. Since the indentation moduli

MBerk obtained by Berkovich indentation are known for the individual hydration products from

Tables 9.2, 9.3 and 9.4, the correct contact radius aCC for Cube Corner indentation can be

estimated:

aCC = ameas
Mmeas

MBerk
(9.8)

from which the correct indentation modulusMCC , indentation hardnessHCC and contact creep

modulus CCC for Cube Corner indentation can be obtained:

MCC = MBerk (9.9)

HCC = HBerk

(
MBerk

MCC

)2
(9.10)

CCC = CBerk
MBerk

MCC
(9.11)

The deconvoluted mechanical properties, corrected for the wrongly estimated projected area

of contact with the two equations above, are given in Table 9.5 and displayed in Figure 9-6

together with the scaling relations obtained in Section 9.2.2 for grids performed with a Berkovich

indenter at Pmax = 2 mN. The best power fit of the C versus M relation is C = 0.841M1.380

(where C and M are expressed in GPa) with a correlation R2 = 0.736. The best linear fit of

the C versus H relation is C = 91.4H with a correlation R2 = 0.897.

From a qualitative point of view creep data gathered with a Cube Corner probe and with

a Berkovich probe are in perfect agreement. For both indenter probes C scales linearly with
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Figure 9-6: Deconvoluted contact creep modulus C (a) versus the deconvoluted indentation
modulus M and (b) versus the deconvoluted indentation hardness H obtained from indents
performed on the products of hydration with a Cube Corner indenter. The scalings obtained
with a Berkovich indenter at Pmax = 2 mN also are displayed on the figure (dashed red lines).
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PC-20-24(SF)-2 PC-20-32(SF)-2 PC-30-0-5
Peak 1 Peak 2 Peak 3 Peak 1 Peak 2 Peak 3 Peak 1 Peak 2 Peak 3

M m(1) 23.41 38.45 49.65 23.41 38.45 49.65 20.09 32.96 46.51
sd(2) 7.21 5.83 5.55 6.41 5.84 5.14 4.56 4.59 6.74

H m(1) 0.812 1.586 2.421 0.784 1.443 2.205 0.541 1.102 1.629
sd(2) 0.245 0.353 0.242 0.238 0.265 0.480 0.139 0.201 0.297

C m(1) 84.24 137.6 259.3 63.13 125.8 203.6 40.62 71.28 121.80
sd(2) 19.85 34.59 64.20 22.18 24.69 35.07 9.06 14.10 38.56

f 0.120 0.685 0.195 0.076 0.613 0.310 0.347 0.429 0.224

Table 9.5: Results of the 3-peak deconvolution obtained for grids performed at Pmax = 0.5 mN
with a Cube Corner indenter.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.

H and the exponent of the power C −M relation is the same. From a quantitative point of

view the creep data gathered at the two maximum loads differ from each other. For a given

indentation hardness H the measured contact creep modulus C is about 55% smaller with a

Cube Corner indenter than with a Berkovich indenter. For a given indentation modulus M the

measured contact creep modulus C is about 40% smaller with a Cube Corner indenter than

with a Berkovich indenter. In the case of an indentation exhibiting a lot of plasticity (which

is the case with Cube Corner indentation) instantaneous plasticity may occur during the creep

phase and lead to an overestimation of the creep behavior and to an underestimation of the

contact creep modulus (see Section 3.3.3). As noted in Section 3.3.3, this underestimation is

more pronounced with a Cube Corner probe than with a Berkovich probe, which may explain

the discrepancy observed between creep data gathered with the two different probes. Therefore

the comparison with Cube Corner indentation is rather inconclusive with regard to the linearity

(with respect to stresses) of the creep behavior.

9.3.2 Creep Data from Berkovich Indentation at Pmax = 100 mN

In contrast, the linearity of the creep behavior with regard to the applied stress may be checked

by changing not the indenter probe but the indentation load. This check is the focus of this

Section. Here the creep properties are measured with a grid of Berkovich indentations performed

at Pmax = 100 mN on samples PC-15-0-0, PC-20-0-2 and PC-30-0-0. For a maximum load
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PC-15-0-0 PC-20-0-2 PC-30-0-0
Peak 1 Peak 2 Peak 1 Peak 2 Peak 1 Peak 2

M
m(1)

sd(2)
44.95
3.51

52.79
2.96

41.61
4.03

49.40
3.76

24.47
2.38

30.22
2.93

H
m(1)

sd(2)
1.178
0.221

1.598
0.199

1.172
0.239

1.741
0.261

0.541
0.119

0.843
0.183

C
m(1)

sd(2)
365.91
57.08

499.62
75.30

326.20
65.22

506.49
89.37

162.11
32.30

255.30
41.11

f 0.462 0.372 0.664 0.301 0.467 0.341

Table 9.6: Results of the 3-peak deconvolution obtained for grids performed at Pmax = 100
mN.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.

Pmax = 100 mN the maximum indentation depth (hmax ∼ 2020 nm ±440 nm) no longer satisfies

the scale separability conditions (4.1). The deconvoluted properties are not representative of

an individual product of hydration but are instead a composite response of the products of

hydration. The deconvoluted properties of the first two peaks are given in Table 9.6 and

displayed in Figure 9-7 together with the scaling relations obtained in Section 9.2.2 for grids

performed at Pmax = 2 mN. The best power fit of the C versus M relation is C = 1.901M1.404

(where C and M are expressed in GPa) with a correlation R2 = 0.955. The best linear fit of

the C versus H relation is C = 299.1H with a correlation R2 = 0.984.

From a qualitative point of view creep data gathered at Pmax = 2 mN and at Pmax = 100 mN

are in perfect agreement. For both maximum loads C scales linearly with H and the exponent

of the power C −M relation is the same. From a quantitative point of view the creep data

gathered at the two maximum loads differ from each other slightly. For a given indentation

hardness H the measured contact creep modulus C is about 30% smaller at Pmax = 2 mN than

at Pmax = 100 mN. For a given indentation modulusM the measured contact creep modulus C

is about 20% smaller at Pmax = 2 mN than at Pmax = 100 mN. Although the agreement is not

perfect it remains quite remarkable given that the maximum load Pmax was multiplied by 50!

Therefore the assumption of linearity of the creep behavior with regard to the applied stresses

is reasonable.

Further increasing the maximum load, up to the microindentation level, will provide the

306



Indentation Hardness H, GPa

Indentation Modulus M, GPa

b)

a)
C
o
n
ta
ct
 C
re
ep
 

M
o
d
u
lu
s 
C
, 
G
P
a

C
o
n
ta
ct
 C
re
ep
 

M
o
d
u
lu
s 
C
, 
G
P
a

0

100

200

300

400

500

600

0 0.5 1 1.5 2

w/c=0.15
w/c=0.2, HT at 2 days
w/c=0.3
Scaling at Pmax=2 mN
Linear Fit

0

100

200

300

400

500

600

0 10 20 30 40 50 60

w/c=0.15
w/c=0.2, HT at 2 days
w/c=0.3
Scaling at Pmax=2 mN
Power Fit

Figure 9-7: Deconvoluted contact creep modulus C (a) versus the deconvoluted indentation
modulus M and (b) versus the deconvoluted indentation hardness H obtained from indents
performed on the products of hydration at Pmax = 100 mN. The scalings obtained at Pmax = 2
mN also are displayed on the figure (dashed red lines).
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PC-15-0-0 PC-30-0-0 PC-40-0-0 Error(4), %

Contact
Measured from

microindentations
404.0±38.6 177.9±11.5 126.4±10.6 N.A.

Creep
Homogenized

from nano C(1)
282.2 199.9 165.1 24.4

Modulus
Homogenized

from nano H(2) 371.3 207.6 164.9 18.4

Cmicro, GPa
Homogenized

from nano M (3) 420.6 192.3 157.0 12.1

Table 9.7: Microscopic indentation creep modulus C (in GPa) measured by microindentations
and homogenized from grids of nanoindentations.
(1) The homogenized C is calculated from the indentation creep moduli measured by nanoindentations.
(2) The homogenized C is calculated from the indentation hardnesses H measured by nanoindentations and
converted into indentation creep moduli.
(3) The homogenized C is calculated from the indentation moduliM measured by nanoindentations and converted
into indentation creep moduli.
(4) The error is the relative error with respect to the creep modulus measured from microindentations, averaged
over the three samples.

homogeneous creep response of the paste.

9.3.3 Microindentations on Cement Paste

This Section aims to validate the homogenization procedure developed in Section 5.3.3 for

heterogeneous solids with logarithmic creep by comparing estimates of homogenized contact

creep moduli with experimental data from microindentation. On three samples (PC-15-0-0,

PC-30-0-0 and PC-40-0-0) 50 microindentations are performed (at Pmax = 8 N) with a creep

phase of duration τH = 180 s. The microindentations probe the material at a homogeneous

level, as can be observed from the low coefficient of variations (less than 10% for all samples)

of the measured contact creep moduli Cmicro (see Table 9.7).

Following the homogenization procedure described in Section 5.3.3 the homogenized contact

creep modulus Cmicro can be estimated from the 400 contact creep moduli {Ci}i=1..400 measured

by a grid of nanoindentations with Equation (5.56):

N∑

i=1

1

1 + 1
2(Ci/Cmicro − 1)

=
N∑

i=1

Ci/C
micro

1 + 1
2(Ci/Cmicro − 1)

(9.12)

The results of this calculation are given in Table 9.7. On average for the three samples the

difference between the contact creep modulus measured by microindentation and that homog-
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enized from a grid of nanoindentations is of 24.4%. Although not perfect, the agreement is

reasonable.

A candidate for the discrepancy could simply be noise in the measured {Ci}i=1..400 at

the scale of the nanoindentations. We test this hypothesis by making use of the correlation

between contact creep modulus and indentation modulus or hardness. Instead of homogenizing

{Ci}i=1..400 directly we aim to convert the measured {Mi}i=1..400 and {Hi}i=1..400 into contact

creep moduli and then homogenize them. To do so, the C versus M and C versus H relations,

which are known for the products of hydration only (see Section 9.2.2), need to be extended.

From a 4-Gaussian deconvolution of all nanoindentations of a grid of nanoindentations Figure

9-8 shows that even for non hydrated matter the contact creep modulus is strongly correlated

with indentation modulus and indentation hardness. The scaling relations derived for hydration

products in Section 9.2.2 are extended above M = 63.5 GPa and H = 3 GPa. The contact

creep modulus Ci can be calculated from the indentation modulus Mi with:





Ci = 0.730M1.586
i if Mi < 63.5 GPa

Ci = 8.790Mi − 30.54 if Mi > 63.5 GPa
(9.13)

and from the indentation hardness Hi with:





Ci = 200.8Hi if Hi < 3 GPa

Ci = 99.50Hi + 304.0 if Hi > 3 GPa
(9.14)

For the three samples of interest in this Section (PC-15-0-0, PC-30-0-0 and PC-40-0-0),

from the measured indentation hardnesses {Hi}i=1..400 and Equation (9.14) the indentation

creep moduli {Ci}i=1..400 are calculated and then homogenized (see Table 9.7). The same

process is repeated with the indentation moduli {Mi}i=1..400 and Equation (9.13) (see Table

9.7). The so obtained homogenized contact creep moduli Cmicro compare much better with

the indentation creep moduli measured by microindentations. When basing the study on the

indentation modulus especially, on average over the three samples the relative difference is of

only 12.1%, which is very satisfactory. This observation suggests that the discrepancy observed

when homogenizing directly the measured contact creep moduli {Ci}i=1..400 may mostly be

due to noise in the measurement of {Ci}i=1..400. In addition it validates the homogenization
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Figure 9-8: Deconvoluted contact creep modulus C (a) versus the deconvoluted indentation
modulusM and (b) versus the deconvoluted indentation hardness H obtained from indentation
grids performed with a Berkovich indenter at Pmax = 2 mN. The fits up to M = 63.5 GPa and
H = 3 GPa are the fits obtained on the products of hydration in Section 9.2.2.
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procedure developed in Section 5.3.3 for creep properties.

9.3.4 Comparison with Macroscopic Creep of Concrete

Cementitious materials in general and concrete in particular have been the subject of extensive

macroscopic testing of their creep behavior. Therefore a discussion of our nanoindentation

results with respect to the macroscopic creep of concrete may prove instructive.

Qualitative Comparison

Creep experiments on concrete are often performed for several months to several years. The

total creep deformation is usually divided among two contributions which are termed the basic

creep and drying creep. Basic creep occurs under conditions of no moisture exchange with the

ambient medium, i.e., at hygral equilibrium [132]. Any additional deformation to basic creep

is said to be drying creep. Given the characteristic size (on the order of the micron) of the

volume of material probed by each nanoindentation, this volume is at hygral equilibrium and

we expect nanoindentation testing to provide the basic creep of the indented phase.

Relative humidity has an influence on the basic creep [132]. Different relative humidities

imply different moisture contents within the paste, with different continued hydration kinetics as

a consequence. Since the creep behavior depends on the structure of the cement and therefore on

the hydration degree, the relative humidity has an influence through the differences in aging of

the paste. In the long term the rate of the basic creep does not depend on the relative humidity,

as can be observed in Figure 9-9. In indentation testing the duration of the creep tests is on the

order of the minute, i.e., much shorter than the characteristic time of the process of hydration.

Therefore the aging of the paste during an indentation creep experiment is negligible.

The kinetics of the creep of concrete can be divided among a short-term and a long-term

regime. Since a long-term creep behavior has been identified the question of its dependence

with respect to time has been asked. There is no experimental evidence that the creep behavior

reaches an asymptote over time [132], and it is generally believed that concrete creeps with no

limiting value. Two functions (and many variations of them) which capture an asymptote-free

behavior are usually proposed for concrete:

• The first proposed function is a power function of time, in which the creep deformation
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Figure 9-9: Influence of relative humidity of storage on creep of concrete cylinders (100 x 150
mm) moist-cured for 28 days and then loaded at the humidity indicated (adapted from [132]).
We note that from the age of about one year the curves are parallel to each other.

c(t) is proportional to tα [171]. The power function appears to be the best equation to

fit many sets of data although it generally overestimates the creep deformations at large

times.

• The second proposed function is a logarithmic function of time, in which the creep defor-

mation c(t) is proportional to ln(t/τ) [188] [11]. Although the logarithmic function does

not capture well the short-term creep behavior it captures well the long-term behavior,

as can be observed in Figure 9-10. This observation suggests the surprising result that

creep testing by nanoindentation may give access in a minute-long test to the long-term

creep behavior of concrete. This suggestion is verified in a more quantitative manner in

the next Section.

Quantitative Comparison

The creep experiments performed on concrete by Le Roy [113], which are displayed in Figure 9-

10, are here considered. Those experiments exhibit a clear logarithmic dependence. The tested

concrete was made up of 71.5% of granulates (in volume of concrete) and of a cement with

water-cement ratio w/c = 0.33 and 10% of silica fumes added [113]. The creep experiments
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Figure 9-10: Logarithmic time-dependence of the creep behavior of concrete samples loaded at
different ages (adapted from [186]). The experiments were performed by Le Roy [113].

were run for up to a few years. The samples were cylinders of 16 cm in diameter and 1 meter

in length, protected from hygral exchanges with the surrounding environment and tested in

uniaxial compression. The uniaxial creep modulus Cuni = tdJ/dt of the creep experiment

performed on the concrete can easily be calculated from Figure 9-10: Cuni = 455 GPa.

We perform a grid of nanoindentations on sample PC-30-8(SF)-0 which has mix proportions

close to those of the cement paste of the concrete tested by Le Roy. For sample PC-30-8(SF)-0,

from the measured indentation moduli {Mi}i=1..400 and by using Equations (9.13) and (5.56)

we calculate a homogenized contact creep modulus Cmicro of the paste Cmicro = 240 GPa.

At the scale above the concrete has a clear matrix-inclusion morphology (see Section 6.2).

The granulates do not creep. The granulates (volume fraction f2 = 0.715 and contact creep

modulus C2 = +∞) being embedded in the cement paste (volume fraction f1 = 0.285 and

contact creep modulus C1 = Cmicro) the macroscopic contact creep modulus Cmacro can be

estimated by a Mori-Tanaka scheme (see Section 5.3.3):
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= Cmicro
(

1 + 2
f2
f1

)
(9.15)

from which expression is found Cmacro = 1445 GPa≃ 3Cuni. Said otherwise, we estimate a

contact creep modulus about 3 times as great as the measured uniaxial creep modulus of the

concrete. This proportionality factor of 3 may not be a coincidence. Indeed, contact creep

modulus and indentation hardness are strongly correlated (see Section 9.2.2). Therefore, by

analogy with Tabor’s law (2.58) which stipulates that the indentation hardness is about three

times as great as the uniaxial compressive strength, it is not that surprising for the contact

creep modulus to be about three times as great as the uniaxial creep modulus.

Nanoindentation creep experiments yield results which compare well with macroscopic creep

experiments. The observed logarithmic dependence of macroscopic creep tests (see Section

9.3.4) proves that the creep assessed by nanoindentation is indeed the long-term creep of con-

crete. Each nanoindentation probes a micrometer-sized volume of material, the creep phase

being on the order of a minute. In comparison, meter-sized concrete samples are tested for up

to three years. In length as in time, measuring the long-term creep behavior of cementitious

materials by nanoindentation instead of macroscopically enables to gain not less than 6 orders

of magnitude!

9.4 Speculations on Origin of Creep of C-S-H

Numerous mechanisms were proposed to explain the creep behavior of cementitious materials.

To explain the short-term creep various models involve migration of water (seepage theory

[150]), densification and ordering due to gradual crystallization (interlayer theory [74]), increase

in the rate of hydration under stress [82], stress redistribution consecutive to the formation of

new hydrates (solidification theory [13] [14]) or thermally activated processes (thermal activation

theory [197]). Regarding the long-term creep behavior the proposed mechanisms are mostly

mechanical and involve the shear of C-S-H layers [156] or the relaxation of micro-prestresses
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[12].

In Section 9.2 we identified a logarithmic creep of C-S-H as well as scaling relations of the

contact creep modulus C with the indentation modulus M or the indentation hardness H. Do

those results provide or confirm information regarding the C-S-H microstructure?

9.4.1 Does C-S-H Solid Creep?

In this Section the question addressed is whether the C-S-H solid creeps. The question is

addressed by hypothesis testing by assuming that the C-S-H solid does indeed creep. Such a

hypothesis (a composite C-S-H phase made of a creeping C-S-H solid and pores) was in fact

considered in Section 4.4, in which the link between the C-S-H solid creep properties and those

of the solid-pore composite was derived. We recall that for any morphology the parameter

which governs the amplitude of the creep scales almost linearly with the indentation modulus

of the C-S-H phase. A time-dependent Poisson’s ratio (case of a deviatoric creep in Section 4.4)

may create a slight non-linearity of this scaling but this non-linearity is almost negligible.

Therefore the pronounced non-linearity of the contact creep modulus C versus indentation

modulus M scaling relation, which we observe experimentally (see Section 9.2.2), implies that

the mechanism of creep deformation of the C-S-H phases is not the deformation of the C-S-H

solid particles in their bulk.

9.4.2 Comparison with Geomaterials

Here we compare the creep behavior of C-S-H with the creep behavior of geomaterials such

as clay, sandstone, and sand. The reason for attempting such a comparison is that C-S-H and

geomaterials are all natural composites with a (more or less) disordered heterogeneous assembly.

In geotechnical engineering the creep of geomaterials is measured by oedometer testing

(see Figure 9-11). It is widely admitted in the geotechnical community that all geomaterials

creep logarithmically with respect to time [108]. In oedometer testing the tested sample is

cylindrical, of horizontal circular cross-section A. The sample is surrounded by a ring which

prevents any lateral deformation (see Figure 9-11). A vertical load F is applied to the loading

cap. The displacement h of the loading cap (and thus the vertical strain εv of the sample) is

measured over time. Although the boundary conditions on the side of the sample are different,
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Figure 9-11: Apparatus for oedometer testing (courtesy from J. Germaine).

an oedometer test looks a lot like a flat punch indentation test, the hardness being the (ideally)

uniform vertical stress σv = F/A in the sample!

In geotechnical engineering creep is quantified by the coefficient of secondary compression

Cαε defined as Cαε = dεv/d(log t) [108]:

Cαε =
dεv

d(log t)
= tε̇v (9.16)

For geomaterials as different as clays, sands or peat, Cαε exhibits a very specific behavior, as it

remains nearly constant over wide ranges of applied vertical stresses σv (see Figure 9-12) and

thus of packing densities η.

We now apply the formalism of indentation analysis to oedometer testing. For flat punch

indentation the displacement rate ḣ(t) of the loading cap relates by definition to the contact

creep compliance L(t) of the the tested material by (see Equation 3.43):

ḣ(t) = L̇(t)Pmax

Noting that Pmax is proportional to the indentation hardness H and that by definition L̇(t) =

1/(Ct) (see Equation 3.53), we have:

ḣ(t) = L̇(t)Pmax ∝ L̇(t)H =
H

Ct
(9.17)
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Figure 9-12: Schematic of the coefficient of secondary compression Cαε versus applied vertical
stress σv curve. Cαε varies little with σv but around the preconsolidation pressure.

Combining Equations (9.16) and (9.17) yields:

Cαε ∝
H

C
(9.18)

Therefore the coefficient of secondary compression Cαε used in geotechnical engineering

is inversely proportional to the C-to-H ratio obtained in indentation analysis. The linear

scaling between the contact creep modulus C and the indentation hardness H for C-S-H over

a wide range of packing densities in indentation testing is equivalent to the invariability of the

coefficient of secondary compression Cαε for geomaterials over a wide range of vertical stresses in

oedometer testing. This observation suggests that C-S-H behaves very much like geomaterials.

All geomaterials have in common that they are made of particles. At least for sands, for which

the grains do not creep, creep deformations are the result of intergranular sliding. This suggests

that creep deformations in C-S-H are not distributed in the bulk of the C-S-H solid particles

but are localized on surfaces. Therefore the creep of C-S-H may well be due to sliding between

neighboring C-S-H particles.

9.4.3 Can a Logarithmic Creep be Explained by a Granular Behavior?

If a granular behavior can explain the linear scaling between contact creep compliance C and

indentation hardness, can it also explain the logarithmic time-dependence of the creep behavior?
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Answering this question is the focus of this Section.

The physics community started studying the creep behavior of granular media after it

was experimentally shown that the compaction of vibrated granular media is logarithmic with

respect to time [105]. Several models were then proposed to explain this feature, among which

the diffusing void model [93] and a model involving a combination of independent-particle

movements and collective excitations [8]. But the most popular and plausible explanation is

now based on free volume dynamics [136] [25] [114], although the free volume kinetics are often

assumed by lack of understanding. This explanation, presented next for C-S-H and inspired

from the work of Nowak and Knight [136], relies on the idea that the rate of increase in the

volume fraction of solid decreases exponentially with the excluded volume.

The derivation is based on the idea that, when a load is applied to the system, the basic

creep event, i.e., the displacement of a C-S-H particle with regard to the others can only occur

if there is a pore large enough for the particle. The C-S-H particles are assumed to have a

unique volume ω. Let n be the number of particles per unit volume, ηmax be the limit packing

density of the particles and nmax be the limit number of particles per unit volume. The free

volume per grain v is:

v =
1

n
− 1

nmax
= ω

(
1

η
− 1

ηmax

)
(9.19)

Considering that the variations in packing density during the creep process are small yields:

v ≃ ωηmax − η
η2max

(9.20)

The pore volume distribution is assumed to follow a Poisson’s distribution with the free volume

v as a mean value so that the probability for a pore to have a volume Ω larger than ω is given

by P (Ω > ω) = exp(−ω/v). We expect the kinetics of the creep process to be governed by this

factor:
dη

dt
∝ exp

(
−ω
v

)
= exp

(
− η2max
ηmax − η

)
(9.21)

The same type of kinetics can also be obtained by considering that rearrangements of particles

become less frequent with time passing by, such that t ∼ en [136]. The interpretation for such

kinetics is that when the packing density increases each rearrangement involves a larger amount
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of particles (this interpretation is supported experimentally [85]). Equation (9.21) is rewritten:

dt ∝ dη exp

(
η2max

ηmax − η

)
(9.22)

After integration between the initial and the current states the dominating exponential term is

kept:

t ∝ (ηmax − η)2
η2max

exp

(
η2max

ηmax − η

)
(9.23)

Since the term in front of the exponential varies slowly we have:

t ∝ exp

(
η2max

ηmax − η

)
(9.24)

and finally, combining Equations (9.22) and (9.20), we find:

dη

dt
∝ 1

t
(9.25)

which translates into a logarithmic dependence of the creep behavior of C-S-H with regard

to time. Free volume dynamics justify the observed kinetics of the creep of C-S-H but are

not limited to volumetric deformations. Although free volume dynamics lead to volumetric

deformations in oedometer testing or compaction of vibrated granular media, they can also be

applied to explain the kinetics of shear deformations [114].

In conclusion, the observed logarithmic dependence of the time-dependent behavior and

the C versus H scaling (see Section 9.4.2) can be explained by a rearrangement of the C-S-H

particles. The creep of cementitious materials may then well be due to the sliding of C-S-H

particles with respect to each other, leading to a rearrangement of collections of C-S-H particles

and of the force network within the products of hydration.

9.5 Chapter Summary

In this Chapter we focused on assessing the creep behavior of C-S-H. We showed that the

creep behavior is well described over time by a logarithmic function. Thus the long-term creep

behavior can be characterized by a unique parameter, namely the contact creep modulus C.
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The scaling between the contact creep modulus C and the microstructure (packing density η)

of C-S-H is independent of the mix proportions and processing.

The non-linear scaling of the contact creep modulus with the packing density leads to

discarding the hypothesis that the C-S-H solid particle creeps in its bulk. The linear scaling

of the contact creep modulus C with the indentation hardness H is reminiscent of the creep

behavior of geomaterials which also exhibit a creep behavior which is logarithmic with regard

to time. A free volume dynamics theory can explain the logarithmic creep behavior of granular

materials, which strongly suggests that the creep behavior of C-S-H is due to sliding of C-S-H

particles with respect to each other and consequently that creep deformations in the C-S-H

solid are localized on surfaces of contact between C-S-H particles.

The creep properties measured by nanoindentation can well explain, qualitatively as well

as quantitatively, the long-term creep behavior of concrete. Indentation creep experiments,

compared to macroscopic creep experiments, are faster by about 6 orders of magnitude and

performed on samples smaller by about 6 orders of magnitude. Therefore indentation creep

experiments may prove to be of high interest for the assessment of the long-term creep behavior

of cementitious materials.
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Part VI

Conclusions
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Chapter 10

Summary of Results and

Perspectives

At the outset of this thesis we defined as the ultimate goal of this study the implementation of

the Materials Science paradigm for cementitious materials, that is, the assessment of the link

between mix proportions, microstructure and mechanical performances. This Chapter presents

a summary of this implementation for sub-stoichiometric cement pastes. Based on the findings

and contributions some future research is proposed.

10.1 Summary of Main Findings

The study revealed the following scientific findings about the microstructure of sub-stoichiometric

cement pastes and its link with mix proportions and mechanical performance:

• The C-S-H solid (i.e., the C-S-H particle) is a cohesive frictional material. Its mechanical

properties (ms = 63.5 GPa, hs = 3.0 GPa, cs = 0.40 GPa and αs = 0.19) do not depend

on the water-cement ratio, on the application of a heat treatment or on an addition of

calcareous filler. In contrast, an addition of silica fumes may eventually increase the

contact hardness hs of the C-S-H solid by modifying the elementary cohesive bonds of the

C-S-H particles without modifying their pressure dependence. This modification may be

due to the decrease in Ca/Si ratio of the C-S-H solid consecutive to the addition of silica.
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• The C-S-H phases are a mix of C-S-H solid and pores as a result of the packing of the C-S-H

particles. The C-S-H phases present a nanogranular morphology. Although the particles

may be elongated, shape does not matter at the levels of packing typically encountered in

mature cement pastes (η > 0.64). Consequently the mechanical properties of the C-S-H

phases are a sole function of their packing density η.

• Three preferential packing patterns have been observed in sub-stoichiometric cement

pastes: In addition to the Low-Density (LD) C-S-H and High-Density (HD) C-S-H phases,

an Ultra-High-Density (UHD) C(-S-)H phase has been identified. Its properties (MUHD =

43 GPa, HUHD = 1.5 GPa and ηUHD = 0.83) vary little with mix proportions (except

when adding silica fumes) and processing. UHD C(-S-)H may well contain some Port-

landite (CH) and not be made of C-S-H only. Nevertheless its mechanical behavior is

perfectly captured by the formalism here developed (C-S-H solid and pores).

• The mechanisms by which mix proportions and processing modify the microstructure

have been identified. Heat treatment releases water trapped in the nanoporosity of the

C-S-H nanoparticles, which then becomes available for further hydration of the remaining

clinkers. In addition to modifying the C-S-H particle cohesive bonds, silica fumes produce

more C-S-H by reacting with Portlandite (pozzolanic reaction). Calcareous filler is mostly

non reactive and does not, strictly speaking, modify the microstructure but acts by mere

mechanical reinforcement of the hydrated matter.

• A predictive model has been proposed which enables estimation of the volume fractions

of clinker and C-S-H solid as well as the gel porosity in the paste, for water-cement ratios

0.2 ≤ w/c ≤ 0.4, for additions of silica fumes up to 32% (in mass of clinker) and for

application of a heat treatment (48-hour long placement in an oven at 90 ◦C at 2 days

after casting) or not.

• The creep of the C-S-H phases is perfectly captured by a logarithmic function. The

magnitude of this creep is a sole function of their packing density η and is thus an intrinsic

property of each C-S-H phase (CLD = 110 GPa, CHD = 180 GPa and CUHD = 340 GPa).

The creep identified by indentation testing is the long-term creep behavior of cementitious
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materials. The contact creep compliance scales inversely with the indentation hardness

(C = 200H).

10.2 Research Contributions

The implementation of the Materials Science paradigm for sub-stoichiometric cement pastes

required the development of new indentation analysis techniques, which are listed below:

• The existing indentation analysis tools which assess the elastic and strength properties of

cohesive-frictional materials have been extended to linear-viscoelastic cohesive-frictional

materials. Viscosity can have a non-negligible effect on the measured indentation modulus

and hardness. By carefully designing the loading profile however, those effects can be

limited.

• The analysis tools which allow the extraction of the viscous properties of a solid by

sharp indentation have been developed. For indentation creep and relaxation tests simple

formulas (Eqs. (3.30) and (3.69)) have been derived which enable a reliable measurement

of those viscous properties even when plasticity occurs during loading.

• The implementation of hardness-packing density and modulus-packing density scaling re-

lations in a reverse analysis algorithm provides a versatile means to probe the microstruc-

ture of any cohesive-frictional porous material and to separate constituent strength prop-

erties (cs, αs) from microstructure (η, η0) in indentation analysis of porous materials.

Given the difficulty of estimating the porosity of porous materials with classical methods,

the reverse algorithm provides a new, nondestructive means to determine the porosity of

nanogranular materials from their nanomechanical response.

• Techniques have been developed which enable the macroscopic indentation properties of

a highly heterogeneous material to be estimated from a grid of nanoindentations. Those

techniques apply to elastic, strength and creep properties.
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10.3 Industrial Benefit

Associated with the scientific contributions is an industrial benefit. The experimental study

showed that indentation creep experiments on cement pastes provide results comparable to

macroscopic creep experiments but faster by about six orders of magnitude and on samples

smaller by about six orders of magnitude. It can be used by the cement and concrete industry

to obtain long term creep properties in a quick and inexpensive manner.

10.4 Limitations and Suggestions for Future Research

The homogenization scheme designed to estimate a macroscopic indentation hardness from

a grid of nanoindentations could not be directly validated through microindentation testing.

The observed discrepancy was attributed to microcracking during microindentation. A deeper

scrutiny of the reasons for this discrepancy is necessary: If it is confirmed that cracking is a

governing mechanism of failure at the macroscopic scale, an extension of the strength description

which incorporates the fracture parameters needs to be developed.

UHD C(-S-)H was tentatively identified as a mix of C-S-H and Portlandite. A definitive

proof is unlikely to be obtained by indentation means only since, by definition, the indentation

technique is a mechanical test. A combination of the indentation technique with other sophisti-

cated materials science analysis techniques such as Scanning Electron Microscopy (SEM), X-Ray

Diffraction (XRD), X-Ray Fluorescence (XRF), Small Angle Neutron Scattering (SANS) and

Nuclear Magnetic Resonance (NMR) would undoubtedly provide valuable information which

would complement and help to interpret the indentation results.

Modeling of the C-S-H phases has been performed within the framework of continuum

mechanics. The analogy of the mechanical behavior of C-S-H with that of granular materials

suggests however that the use of granular mechanics could be well-suited to model C-S-H. Such

an analysis might, for instance, help to explain the linear scaling between contact creep modulus

and indentation hardness, which for now remains unexplained.
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10.5 Perspectives

Civil infrastructures are usually built at least for decades, sometimes for much longer. Nuclear

waste storage sites, for instance, are intended to retain structural integrity for hundreds of years.

For such critical structures, the knowledge of the material behavior on time scales comparable

to that of the structure is required. Obviously, this is not an easy task!

This study suggests that, to identify determinants of the creep behavior, probing the

nanoscale enables an assessment of the long term macroscopic behavior that is orders of magni-

tude faster than can be found by macroscopic analysis. Given the potential impact of such an

approach we hope this study will incite consideration of "length-time equivalence" (large time

scales can be accessed by looking at small length scales) for other natural composites.
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Appendix A

Proof of Relevance of Method of

Functional Equations for Calculating

the Initial Unloading Slope

We show in this appendix that the method of functional equations used to calculate the response

during the loading and holding phases still remains valid to calculate the initial unloading slope

of the load-displacement curve. The proof is based on the results of T.C.T. Ting [180], who

succeeded in solving analytically, in 1966, in an implicit form, the problem of the indentation

of a linear viscoelastic half-space by a rigid axisymmetric indenter for a load case with any

number of extrema.

A.1 Presentation of Ting’s solution

We consider the case of a contact area monotonically increasing and then decreasing. Ting

introduces in his solution several auxiliary functions and parameters:

• a(t) is the radius of the contact area

• tm is the time at which a(t) reaches its maximum

• t1(t) is an auxiliary time, introduced for t > tm. t1(t) is defined by: a(t1) = a(t) and

t1(t) < tm.

327



• Ψ(t) and Φ(t) are two material functions, defined from the relaxation functions of the

material according to the following equations in the Laplace domain:

sΦ̂(s) =
λ̂(s) + 2Ĝ(s)

2sĜ(s)(λ̂(s) + Ĝ(s))
and sΨ̂(s) =

1

sΦ̂(s)

where Ψ̂(s), Φ̂(s), λ̂(s) and Ĝ(s) are the Laplace transforms of Ψ(t), Φ(t), λ(t) and G(t).

λ(t) and G(t) are the relaxations functions of the Lame’s coefficients.

• he(t) is the penetration depth solution for an elastic material. For a circular conical

indenter he(t) can be expressed as follows: he(t) =
π

2 tan(α)
a(t)

• Pe(t) is the solution for the load applied on the indenter for an elastic material. For

a circular indenter Pe(t) can be expressed as cPe(t) =
πa2(t)

tan(α)
=

4 tan(α)

π
h2e(t), where

c =
1− ν
G

.

With the above notations, Ting’s solution of the considered viscoelastic problem has the

following implicit form:





h(t) = he(t)

P (t) =
∫ t
0− Ψ(t− τ)

∂

∂τ
(cPe(τ)) dτ

for 0 ≤ t ≤ tm (A.1)





h(t) = he(t)−
∫ t
tm

Φ(t− τ)
∂

∂τ

∫ τ
t1(τ)

Ψ(τ − η) ∂
∂η
he(η)dηdτ

P (t) =
∫ t1(t)
0−

Ψ(t− τ)
∂

∂τ
(cPe(τ))dτ

for tm ≤ t (A.2)

A.2 Equivalence of Ting’s Solution and the Method of Func-

tional Equations

First of all, we have to check that the solution developed by Ting for 0 ≤ t ≤ tm gives the same

results as the method of functional equations. The problem of the circular conical indentation

of an elastic material is governed by the equation:

h2e(t) =
π

2 tan(α)

1− ν2
E

Pe(t) (A.3)
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Therefore, the use of the method of functional equations allows us to assert that the problem

of the circular indentation of a linear viscoelastic material, for 0 ≤ t ≤ tm , is governed in the

Laplace domain by:

ĥ2(s) =
π

2 tan(α)

1−
(
ν̂(s)

)2

Ê(s)
P̂ (s) =

π

2 tan(α)

P̂ (s)

M̂(s)
(A.4)

where ĥ2(s) and P̂ (s) are the Laplace transforms of respectively h2(t) and P (t). ν̂(s) and

Ê(s) are the Laplace transforms of the differential operators associated with the viscoelastic

Poisson’s ratio and Young’s modulus.

Ting’s solution for the circular conical indentation of a linear viscoelastic material, for

0 ≤ t ≤ tm, can be rewritten as:

P (t) =

∫ t

0−
Ψ(t− τ)

∂

∂τ
(cPe(τ)) dτ =

∫ t

0−
Ψ(t− τ)

∂

∂τ

(
4 tan(α)

π
h2e(τ)

)
dτ (A.5)

=
4 tan(α)

π

∫ t

0−
Ψ(t− τ)

∂

∂τ

(
h2(τ)

)
dτ

A derivation in the time domain is equivalent to a multiplication by s in the Laplace domain.

A convolution product between two functions in the time domain is equivalent, in the Laplace

domain, to a multiplication between their Laplace transforms. Therefore, Ting’s solution can

be rewritten in the Laplace domain as:

P̂ (s) =
4 tan(α)

π
Ψ̂(s)sĥ2(s) (A.6)

which yields:

ĥ2(s) =
π

4 tan(α)

1

sΨ̂(s)
=

π

4 tan(α)
sΦ̂(s) (A.7a)

=
π

8 tan(α)

λ̂(s) + 2Ĝ(s)

Ĝ(s)(λ̂(s) + Ĝ(s))
(A.7b)

Finally, if we employ the elastic relations,

λ = E
ν

(1 + ν)(1− 2ν)
; G =

E

2(1 + ν)
(A.8)
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we have for a viscoelastic material:

λ̂(s) = Ê(s)
ν̂(s)(

1 + ν̂(s)
)(

1− 2ν̂(s)
) (A.9a)

Ĝ(s) =
Ê(s)

2
(

1 + ν̂(s)
) (A.9b)

Then, equation (A.7) yields:

ĥ2(s) =
π

2 tan(α)

P̂ (s)

M̂(s)
; M̂(s) =

Ê(s)

1−
(
ν̂(s)

)2 (A.10)

which is the same equation as (A.4). Therefore, for 0 ≤ t ≤ tm, Ting’s solution and the method

of functional equations are equivalent.

A.3 Calculation of the Initial Unloading Slope

The initial slope of the unloading part of the load-displacement curve is given by
(
dP

dh

)

t=t+m

=

Ṗ (t+m)

ḣ(t+m)
. We want to check if Ting’s solution for 0 ≤ t ≤ tm, extended to t = t+m, gives the

same results as Ting’s solution for tm ≤ t. We assume that Ψ(t) and Φ(t) are continuous and

derivable on [0, t], and that P (t), Pe(t), h(t) and he(t) are continuous on [0, t] and derivable

on [0, tm[ and ]tm, t]. The proof will require the use of the following relationship, valid for any

continuous and derivable function f(x, y):

d

dx

∫ x

0
f(x, y)dy = f(x, x) +

∫ x

0

∂

∂x
f(x, y)dy (A.11)

Since we consider a load-controlled test, whatever the set of equation considered, Ṗ (t+m) is a

prescribed data. Therefore, ḣ(t+m) can be calculated from the set of equations (A.1) as well as

from the set of equations (A.2). The calculation of the initial unloading slope from the set of

equations (A.1) yields:

ḣ(t+m) = lim
t→t+m

ḣ(t) = ḣe(t
+
m) (A.12)
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The use of the set of equations (A.2) leads to:

ḣ(t+m) = lim
t→t+m

[
ḣe(t)−

d

dt

(∫ t

t+m

Φ(t− τ)
d

dτ

(∫ τ

t1(τ)
Ψ(τ − η) d

dη
he(η)dη

)
dτ

)]
(A.13)

Furthermore, by applying (A.11), we have:

d

dt

(∫ t

t+m

Φ(t− τ)
d

dτ

(∫ τ

t1(τ)
Ψ(τ − η)ḣe(η)dη

)
dτ

)
(A.14)

= Φ(0)
d

dt

(∫ t

t1(t)
Ψ(t− η)ḣe(η)dη

)
+

∫ t

t+m

Φ̇(t− τ)
d

dτ

(∫ τ

t1(τ)
Ψ(τ − η)ḣe(η)dη

)
dτ

Since,

lim
t→t+m

∫ t

t+m

Φ̇(t− τ)
d

dτ

(∫ τ

t1(τ)
Ψ(τ − η)ḣe(η)dη

)
dτ (A.15)

we have:

ḣ(t+m) = ḣe(t
+
m)−Φ(0)

d

dt

(∫ t

t1(t)
Ψ(t− η)ḣe(η)dη

)

t=t+m

(A.16)

which can be decomposed into:

ḣ(t+m) = ḣe(t
+
m)−Φ(0)

d

dt

(∫ t

t+m

Ψ(t− η)ḣe(η)dη
)

t=t+m

+ Φ(0)
d

dt

(∫ t1(t)

t−m

Ψ(t− η)ḣe(η)dη
)

t=t+m
(A.17)

The application of (A.11) to the first integral term in (A.17) leads to:

d

dt

(∫ t

t+m

Ψ(t− η)ḣe(η)dη
)

t=t+m

= lim
t→t+m

[
Ψ(0)ḣe(t) +

(∫ t

t+m

Ψ̇(t− η)ḣe(η)dη
)]

(A.18)

= Ψ(0)ḣe(t
+
m)
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The application of (A.11) to the second integral term in (A.17) leads to:

d

dt

(∫ t1(t)

t−m

Ψ(t− η)ḣe(η)dη
)

t=t+m

= lim
t→t+m

d

dt

(∫ t1(t)

t−m

Ψ(t− η)ḣe(η)dη
)

(A.19)

= lim
t→t+m

[
ṫ1(t)

d

dt1

(∫ t1(t)

t−m

Ψ(t− η)ḣe(η)dη
)]

= ṫ1(t
+
m) lim

t→t+m

[
d

dt1

(∫ t1(t)

t−m

Ψ(t− η)ḣe(η)dη
)]

= ṫ1(t
+
m) lim

t→t+m


 Ψ(t(t1)− t1)ḣe(t1)+
∫ t1(t)
t−m

(
Ψ̇(t− η)ḣe(η)/ṫ1(t)

)
dη




Since limt→t+m t1(t) = t−m, we eventually have:

d

dt

(∫ t1(t)

t−m

Ψ(t− η)ḣe(η)dη
)

t=t+m

= ṫ1(t
+
m) lim

t1→t−m


 Ψ(t(t1)− t1)ḣe(t1)+
∫ t1(t)
t−m

(
Ψ̇(t− η)ḣe(η)/ṫ1(t)

)
dη


(A.20)

= ṫ1(t
+
m)Ψ(0)ḣe(t

−
m)

Finally, by using the set of equations (A.2), ḣ(t+m) can be expressed as follows:

ḣ(t+m) = ḣe(t
+
m)−Φ(0)Ψ(0)

[
ḣe(t

+
m)− ṫ1(t+m)ḣe(t

−
m)
]

(A.21)

We now come back to the definition of t1(t):

a(t) = a(t1(t)) (A.22)

which after derivation with respect to t can be rewritten as

ȧ(t) = ȧ(t1)ṫ1(t) (A.23)

which leads to:

lim
t→t+m

ȧ(t) = lim
t→t+m

ȧ(t1)ṫ1(t) (A.24)
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and

ȧ(t+m) = ȧ(t−m)ṫ1(t
+
m) (A.25)

Since he(t) = g(a(t)) where g is a derivable function, we have:

ḣe(t) = ġ(a(t))ȧ(t) (A.26)

and:
ḣe(t

+
m)

ḣe(t
−
m)

=
ġ(a(t+m))ȧ(t+m)

ġ(a(t−m))ȧ(t−m)
(A.27)

Since a(t) is a continuous function, we eventually find that:

ḣe(t
+
m)

ḣe(t
−
m)

=
ȧ(t+m)

ȧ(t−m)
= ṫ1(t

+
m) (A.28)

Therefore, the calculation of the initial unloading slope by the use of the valid set of equations

(A.2) leads to:

ḣ(t+m) = ḣe(t
+
m) (A.29)

which is equal to the result given by the set of equations (A.1). This proves that the method

of functional equations can be applied to the calculation of the initial unloading slope.
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Appendix B

Results of Statistical Indentation

Techniques
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B.1 3-Gaussian Deconvolution of Hydration Products

M H η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-15-0-0 N.A. N.A. N.A. N.A. N.A. N.A 0.000
PC-15-0-2 N.A. N.A. N.A. N.A. N.A. N.A. 0.000
PC-20-0-0 19.40 4.80 0.440 0.230 0.620 0.020 0.030
PC-20-0-2 17.19 4.80 0.268 0.132 0.629 0.039 0.160

PC-20-8(SF)-0 24.63 4.74 0.724 0.271 0.701 0.036 0.188
PC-20-8(SF)-2 20.03 4.75 0.608 0.059 0.662 0.054 0.058

PC-20-10(CF1)-0 22.36 4.94 0.530 0.149 0.669 0.032 0.084
PC-20-10(CF2)-0 21.48 3.27 0.676 0.103 0.675 0.059 0.074
PC-20-17(SF)-2 23.26 4.92 0.659 0.218 0.675 0.062 0.011
PC-20-21(SF)-0 22.45 3.35 0.679 0.245 0.681 0.070 0.056
PC-20-24(SF)-0 22.57 4.51 0.610 0.281 0.689 0.050 0.146
PC-20-24(SF)-2 25.79 4.41 0.854 0.234 0.710 0.050 0.071
PC-20-25(CF1)-0 20.99 3.59 0.526 0.202 0.663 0.068 0.084
PC-20-25(CF2)-0 21.16 3.12 0.549 0.212 0.658 0.071 0.016
PC-20-32(SF)-2 23.95 4.14 0.806 0.226 0.699 0.053 0.062

PC-25-0-2 23.10 2.00 0.740 0.100 0.710 0.020 0.090

Table B.1: Results of the 3-peak deconvolution of the hydration products: first peak, repre-
senting Low Density (LD) C-S-H. First Part.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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M H η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-30-0-0 21.90 4.90 0.580 0.120 0.680 0.030 0.300
PC-30-0-2 20.20 2.00 0.530 0.100 0.630 0.020 0.020

PC-30-8(SF)-0 21.35 3.91 0.620 0.162 0.674 0.047 0.122
PC-30-8(SF)-2 20.93 3.13 0.566 0.089 0.665 0.028 0.146

PC-30-10(CF1)-0 18.53 1.66 0.592 0.082 0.640 0.056 0.051
PC-30-10(CF2)-0 16.28 3.80 0.396 0.155 0.627 0.041 0.065
PC-30-17(SF)-0 24.45 4.18 0.748 0.129 0.699 0.018 0.193
PC-30-17(SF)-2 18.79 3.98 0.608 0.012 0.654 0.034 0.031
PC-30-21(SF)-0 21.67 1.80 0.626 0.128 0.661 0.053 0.075
PC-30-24(SF)-0 20.70 4.63 0.662 0.183 0.670 0.048 0.116
PC-30-24(SF)-2 23.81 3.39 0.611 0.134 0.678 0.022 0.065
PC-30-25(CF1)-0 18.99 1.51 0.556 0.148 0.646 0.054 0.032
PC-30-25(CF2)-0 21.28 3.15 0.593 0.206 0.666 0.044 0.083
PC-30-32(SF)-0 22.87 3.36 0.771 0.236 0.697 0.039 0.137
PC-30-32(SF)-2 24.30 4.32 0.878 0.277 0.703 0.039 0.297

PC-35-0-0 25.60 3.50 0.600 0.100 0.710 0.020 0.470
PC-35-0-2 19.30 3.30 0.410 0.100 0.640 0.050 0.090
PC-40-0-0 22.50 5.00 0.610 0.170 0.680 0.040 0.500

PC-40-8(SF)-0 22.49 3.53 0.568 0.103 0.682 0.024 0.394
PC-40-10(CF1)-0 19.76 5.03 0.592 0.167 0.662 0.039 0.277
PC-40-10(CF2)-0 22.11 4.31 0.730 0.181 0.679 0.036 0.289
PC-40-21(SF)-0 23.64 4.07 0.621 0.133 0.689 0.033 0.599
PC-40-25(CF1)-0 23.26 1.56 0.603 0.087 0.687 0.014 0.158
PC-40-25(CF2)-0 19.27 4.81 0.570 0.188 0.653 0.042 0.177

Table B.2: Results of the 3-peak deconvolution of the hydration products: first peak, repre-
senting Low Density (LD) C-S-H. Second Part.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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M H η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-15-0-0 27.70 5.70 0.740 0.110 0.690 0.070 0.030
PC-15-0-2 N.A. N.A. N.A. N.A. N.A. N.A. 0.000
PC-20-0-0 31.80 6.10 0.880 0.210 0.750 0.040 0.740
PC-20-0-2 26.93 4.94 0.634 0.092 0.709 0.017 0.123

PC-20-8(SF)-0 37.05 4.60 1.138 0.143 0.792 0.022 0.508
PC-20-8(SF)-2 33.69 6.50 0.876 0.209 0.766 0.043 0.722

PC-20-10(CF1)-0 35.05 6.32 0.972 0.196 0.781 0.043 0.657
PC-20-10(CF2)-0 36.20 5.02 1.002 0.221 0.784 0.037 0.692
PC-20-17(SF)-2 38.37 7.14 1.237 0.298 0.808 0.050 0.820
PC-20-21(SF)-0 38.76 5.45 1.130 0.207 0.802 0.035 0.707
PC-20-24(SF)-0 37.42 6.72 1.169 0.278 0.796 0.044 0.736
PC-20-24(SF)-2 39.97 5.12 1.453 0.289 0.819 0.034 0.726
PC-20-25(CF1)-0 36.99 5.78 1.022 0.223 0.794 0.042 0.607
PC-20-25(CF2)-0 36.50 5.03 1.120 0.253 0.792 0.040 0.681
PC-20-32(SF)-2 38.41 6.07 1.371 0.339 0.804 0.038 0.733

PC-25-0-2 32.40 3.40 0.980 0.140 0.760 0.030 0.610

Table B.3: Results of the 3-peak deconvolution of the hydration products: second peak, repre-
senting High Density (HD) C-S-H. First Part.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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M H η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-30-0-0 31.30 4.50 0.870 0.170 0.750 0.040 0.520
PC-30-0-2 30.60 6.30 0.860 0.230 0.740 0.040 0.730

PC-30-8(SF)-0 33.29 4.37 0.975 0.131 0.762 0.027 0.551
PC-30-8(SF)-2 28.87 4.81 0.844 0.189 0.731 0.038 0.640

PC-30-10(CF1)-0 29.58 3.98 0.865 0.190 0.733 0.033 0.542
PC-30-10(CF2)-0 27.06 4.74 0.723 0.173 0.714 0.034 0.660
PC-30-17(SF)-0 33.68 4.17 1.130 0.178 0.766 0.027 0.588
PC-30-17(SF)-2 28.78 5.03 0.849 0.229 0.729 0.040 0.721
PC-30-21(SF)-0 32.60 4.85 0.945 0.190 0.757 0.034 0.774
PC-30-24(SF)-0 32.10 2.87 1.004 0.138 0.755 0.023 0.475
PC-30-24(SF)-2 33.05 5.85 1.048 0.272 0.764 0.040 0.721
PC-30-25(CF1)-0 30.71 4.77 0.879 0.175 0.744 0.037 0.619
PC-30-25(CF2)-0 33.45 4.97 1.031 0.232 0.766 0.037 0.591
PC-30-32(SF)-0 35.66 4.48 1.187 0.180 0.779 0.026 0.671
PC-30-32(SF)-2 36.52 4.52 1.414 0.260 0.782 0.032 0.531

PC-35-0-0 32.00 2.90 0.870 0.170 0.750 0.030 0.350
PC-35-0-2 27.80 5.20 0.780 0.180 0.720 0.040 0.540
PC-40-0-0 30.40 2.90 0.920 0.100 0.740 0.020 0.290

PC-40-8(SF)-0 30.26 4.24 0.856 0.184 0.734 0.028 0.450
PC-40-10(CF1)-0 28.92 4.12 0.941 0.182 0.729 0.028 0.377
PC-40-10(CF2)-0 30.84 4.42 1.194 0.273 0.751 0.035 0.503
PC-40-21(SF)-0 30.59 2.87 0.905 0.109 0.745 0.023 0.211
PC-40-25(CF1)-0 27.51 2.70 0.809 0.119 0.718 0.018 0.491
PC-40-25(CF2)-0 28.50 4.43 0.944 0.185 0.728 0.032 0.467

Table B.4: Results of the 3-peak deconvolution of the hydration products: second peak, repre-
senting High Density (HD) C-S-H. Second Part.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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M H η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-15-0-0 41.10 8.10 1.150 0.330 0.820 0.060 0.970
PC-15-0-2 42.50 9.50 1.290 0.420 0.830 0.070 1.000
PC-20-0-0 46.10 8.30 1.670 0.340 0.850 0.060 0.230
PC-20-0-2 40.26 8.39 1.210 0.347 0.819 0.051 0.716

PC-20-8(SF)-0 47.33 5.68 1.728 0.326 0.869 0.038 0.304
PC-20-8(SF)-2 49.74 9.56 1.730 0.515 0.882 0.074 0.220

PC-20-10(CF1)-0 48.70 7.34 1.610 0.252 0.870 0.046 0.259
PC-20-10(CF2)-0 49.74 7.03 1.770 0.546 0.886 0.065 0.234
PC-20-17(SF)-2 54.03 5.96 2.150 0.316 0.902 0.045 0.169
PC-20-21(SF)-0 50.36 6.16 1.946 0.354 0.895 0.045 0.236
PC-20-24(SF)-0 52.83 8.69 2.029 0.297 0.882 0.043 0.118
PC-20-24(SF)-2 51.85 5.50 2.196 0.300 0.890 0.037 0.203
PC-20-25(CF1)-0 48.93 6.15 1.553 0.308 0.874 0.039 0.309
PC-20-25(CF2)-0 48.65 6.13 1.671 0.299 0.868 0.035 0.303
PC-20-32(SF)-2 49.18 4.70 2.295 0.352 0.877 0.035 0.205

PC-25-0-2 44.00 8.20 1.480 0.360 0.850 0.040 0.300

Table B.5: Results of the 3-peak deconvolution of the hydration products: third peak, repre-
senting Ultra-High Density (UHD) C(-S-)H. First Part.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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M H η

Sample m(1) sd(2) m(1) sd(2) m(1) sd(2) f (3)

PC-30-0-0 44.20 8.40 1.500 0.460 0.830 0.060 0.190
PC-30-0-2 46.00 9.10 1.710 0.480 0.850 0.060 0.250

PC-30-8(SF)-0 44.44 6.79 1.572 0.331 0.844 0.047 0.327
PC-30-8(SF)-2 43.30 9.61 1.303 0.184 0.818 0.039 0.214

PC-30-10(CF1)-0 40.31 6.74 1.483 0.425 0.817 0.051 0.407
PC-30-10(CF2)-0 38.77 6.97 1.330 0.349 0.801 0.053 0.275
PC-30-17(SF)-0 44.93 6.05 1.843 0.535 0.849 0.055 0.219
PC-30-17(SF)-2 42.12 8.32 1.553 0.311 0.823 0.051 0.247
PC-30-21(SF)-0 44.98 7.52 1.667 0.288 0.845 0.054 0.151
PC-30-24(SF)-0 40.87 5.90 1.434 0.292 0.818 0.040 0.409
PC-30-24(SF)-2 45.73 6.72 1.867 0.369 0.854 0.051 0.215
PC-30-25(CF1)-0 42.97 6.79 1.475 0.405 0.835 0.054 0.349
PC-30-25(CF2)-0 44.74 6.32 1.624 0.239 0.848 0.032 0.326
PC-30-32(SF)-0 46.04 5.90 1.831 0.339 0.850 0.029 0.193
PC-30-32(SF)-2 45.78 4.75 2.352 0.288 0.861 0.034 0.172

PC-35-0-0 43.60 8.60 1.490 0.450 0.830 0.060 0.190
PC-35-0-2 41.00 8.00 1.420 0.340 0.820 0.050 0.370
PC-40-0-0 40.90 7.70 1.460 0.450 0.830 0.070 0.210

PC-40-8(SF)-0 42.41 7.91 1.629 0.389 0.834 0.044 0.156
PC-40-10(CF1)-0 40.88 7.84 1.574 0.403 0.816 0.049 0.346
PC-40-10(CF2)-0 44.22 6.05 1.830 0.363 0.829 0.040 0.208
PC-40-21(SF)-0 42.18 5.87 1.415 0.401 0.822 0.053 0.191
PC-40-25(CF1)-0 35.74 5.53 1.272 0.344 0.778 0.041 0.351
PC-40-25(CF2)-0 39.60 6.67 1.544 0.354 0.809 0.043 0.355

Table B.6: Results of the 3-peak deconvolution of the hydration products: third peak, repre-
senting Ultra-High Density (UHD) C(-S-)H. Second Part.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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B.2 2-Gaussian Deconvolution of All Nanoindentations of a Grid

M H
Sample m(1) sd(2) m(1) sd(2) f (3)

C3S-20-0-0 47.37 7.12 1.749 0.343 0.574
C3S-20-0-2 48.19 6.88 2.176 0.402 0.607

C3S-20-24(SF)-0 53.42 8.62 2.372 0.759 0.630
C3S-20-24(SF)-2 55.61 7.06 2.587 0.466 0.649

C3S-25-0-0 41.89 7.44 1.544 0.377 0.628
C3S-25-0-2 46.18 8.27 2.038 0.442 0.649
C3S-30-0-0 39.13 8.87 1.587 0.504 0.566
C3S-30-0-2 39.36 10.57 1.847 0.674 0.670
PC-15-0-0 41.06 8.52 1.158 0.332 0.559
PC-15-0-2 42.53 9.52 1.292 0.417 0.591
PC-20-0-0 32.29 8.55 0.883 0.313 0.582
PC-20-0-2 36.46 13.51 1.045 0.558 0.743

PC-20-8(SF)-0 38.05 8.60 1.189 0.320 0.645
PC-20-8(SF)-2 34.66 7.61 0.913 0.241 0.542

PC-20-10(CF1)-0 36.83 9.05 1.044 0.325 0.705
PC-20-10(CF2)-0 37.41 7.22 1.046 0.291 0.642
PC-20-17(SF)-2 40.33 8.54 1.316 0.375 0.661
PC-20-21(SF)-0 40.52 7.00 1.195 0.288 0.596
PC-20-24(SF)-0 37.13 9.22 1.181 0.372 0.632
PC-20-24(SF)-2 41.53 7.25 1.548 0.423 0.651
PC-20-25(CF1)-0 39.44 9.22 1.121 0.364 0.690
PC-20-25(CF2)-0 39.18 7.36 1.254 0.340 0.704
PC-20-32(SF)-2 39.96 8.20 1.491 0.512 0.658

PC-25-0-2 33.31 5.23 1.017 0.204 0.667

Table B.7: Results of the 2-peak deconvolution: first peak, representing hydration products.
First Part.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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M H
Sample m(1) sd(2) m(1) sd(2) f (3)

PC-30-0-0 28.85 7.86 0.767 0.274 0.735
PC-30-0-2 32.39 7.46 0.927 0.286 0.718

PC-30-8(SF)-0 34.57 7.25 1.023 0.258 0.723
PC-30-8(SF)-2 28.77 6.79 0.856 0.267 0.786

PC-30-10(CF1)-0 32.16 6.85 0.985 0.334 0.776
PC-30-10(CF2)-0 28.22 6.52 0.773 0.253 0.695
PC-30-17(SF)-0 33.71 6.42 1.110 0.282 0.666
PC-30-17(SF)-2 30.04 6.35 0.921 0.305 0.690
PC-30-21(SF)-0 32.98 5.93 0.962 0.231 0.703
PC-30-24(SF)-0 33.76 6.03 1.091 0.276 0.695
PC-30-24(SF)-2 34.23 7.28 1.108 0.369 0.725
PC-30-25(CF1)-0 33.24 7.10 0.965 0.275 0.749
PC-30-25(CF2)-0 35.56 8.17 1.166 0.400 0.781
PC-30-32(SF)-0 35.92 6.67 1.198 0.259 0.705
PC-30-32(SF)-2 34.79 8.70 1.330 0.462 0.761

PC-35-0-0 29.34 5.19 0.725 0.204 0.702
PC-35-0-2 30.25 8.42 0.895 0.361 0.703
PC-40-0-0 26.33 7.33 0.744 0.262 0.792

PC-40-8(SF)-0 27.40 6.41 0.735 0.243 0.789
PC-40-10(CF1)-0 28.43 8.32 0.911 0.358 0.744
PC-40-10(CF2)-0 29.60 7.82 1.115 0.427 0.853
PC-40-21(SF)-0 26.44 5.92 0.723 0.211 0.763
PC-40-25(CF1)-0 27.08 3.68 0.788 0.167 0.677
PC-40-25(CF2)-0 28.72 7.42 0.940 0.314 0.771

Table B.8: Results of the 2-peak deconvolution: first peak, representing hydration products.
Second Part.
(1) Mean value, in GPa.
(2) Standard deviation, in GPa.
(3) Volume fraction, no units.
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B.3 Particle Properties

Sample cs
(1), GPa αs

(2) hs
(3), GPa

C3S-20-0-0 0.636 0.000 3.03
C3S-20-0-2 0.317 0.335 3.42

C3S-20-24(SF)-0 0.676 0.000 3.22
C3S-20-24(SF)-2 0.281 0.359 3.25

C3S-25-0-0 0.664 0.016 3.29
C3S-25-0-2 0.374 0.281 3.50
C3S-30-0-0 0.456 0.224 3.69
C3S-30-0-2 0.645 0.122 4.10
PC-15-0-0 0.486 0.063 2.70
PC-15-0-2 0.494 0.067 2.77
PC-20-0-0 0.414 0.174 2.97
PC-20-0-2 0.257 0.322 2.67

PC-20-8(SF)-0 0.521 0.085 3.05
PC-20-8(SF)-2 0.429 0.118 2.71

PC-20-10(CF1)-0 0.483 0.074 2.75
PC-20-10(CF2)-0 0.434 0.126 2.79
PC-20-17(SF)-2 0.511 0.089 3.01
PC-20-21(SF)-0 0.467 0.111 2.90
PC-20-24(SF)-0 0.403 0.193 3.03
PC-20-24(SF)-2 0.377 0.255 3.30
PC-20-25(CF1)-0 0.460 0.079 2.65
PC-20-25(CF2)-0 0.489 0.094 2.92
PC-20-32(SF)-2 0.171 0.544 3.66

PC-25-0-2 0.579 0.044 3.07

Table B.9: Particle properties. First Part. (1) Cohesion.(2) Friction coefficient.(3) Contact hardness.
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Sample cs
(1), GPa αs

(2) hs
(3), GPa

PC-30-0-0 0.418 0.170 2.97
PC-30-0-2 0.412 0.193 3.09

PC-30-8(SF)-0 0.504 0.108 3.11
PC-30-8(SF)-2 0.519 0.092 3.08

PC-30-10(CF1)-0 0.398 0.234 3.30
PC-30-10(CF2)-0 0.328 0.299 3.21
PC-30-17(SF)-0 0.501 0.160 3.48
PC-30-17(SF)-2 0.425 0.212 3.34
PC-30-21(SF)-0 0.416 0.192 3.12
PC-30-24(SF)-0 0.556 0.090 3.29
PC-30-24(SF)-2 0.311 0.328 3.29
PC-30-25(CF1)-0 0.493 0.106 3.02
PC-30-25(CF2)-0 0.463 0.150 3.14
PC-30-32(SF)-0 0.533 0.126 3.42
PC-30-32(SF)-2 0.483 0.236 4.02

PC-35-0-0 0.206 0.444 3.07
PC-35-0-2 0.375 0.246 3.20
PC-40-0-0 0.437 0.186 3.23

PC-40-8(SF)-0 0.319 0.317 3.28
PC-40-10(CF1)-0 0.504 0.169 3.57
PC-40-10(CF2)-0 0.555 0.166 3.91
PC-40-21(SF)-0 0.426 0.181 3.11
PC-40-25(CF1)-0 0.249 0.442 3.68
PC-40-25(CF2)-0 0.521 0.161 3.63

Table B.10: Particle properties. Second Part.
(1) Cohesion.
(2) Friction coefficient.
(3) Contact hardness.
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B.4 Mean Packing Density of Hydrates

Sample < η > Sample < η >

C3S-20-0-0 0.872 PC-30-0-0 0.737
C3S-20-0-2 0.873 PC-30-0-2 0.766

C3S-20-24(SF)-0 0.893 PC-30-8(SF)-0 0.779
C3S-20-24(SF)-2 0.916 PC-30-8(SF)-2 0.742

C3S-25-0-0 0.828 PC-30-10(CF1)-0 0.762
C3S-25-0-2 0.853 PC-30-10(CF2)-0 0.732
C3S-30-0-0 0.795 PC-30-17(SF)-0 0.771
C3S-30-0-2 0.805 PC-30-17(SF)-2 0.750
PC-15-0-0 0.821 PC-30-21(SF)-0 0.763
PC-15-0-2 0.830 PC-30-24(SF)-0 0.773
PC-20-0-0 0.759 PC-30-24(SF)-2 0.777
PC-20-0-2 0.776 PC-30-25(CF1)-0 0.773

PC-20-8(SF)-0 0.787 PC-30-25(CF2)-0 0.785
PC-20-8(SF)-2 0.785 PC-30-32(SF)-0 0.781

PC-20-10(CF1)-0 0.795 PC-30-32(SF)-2 0.772
PC-20-10(CF2)-0 0.800 PC-35-0-0 0.744
PC-20-17(SF)-2 0.822 PC-35-0-2 0.750
PC-20-21(SF)-0 0.817 PC-40-0-0 0.726
PC-20-24(SF)-0 0.791 PC-40-8(SF)-0 0.729
PC-20-24(SF)-2 0.826 PC-40-10(CF1)-0 0.741
PC-20-25(CF1)-0 0.808 PC-40-10(CF2)-0 0.746
PC-20-25(CF2)-0 0.813 PC-40-21(SF)-0 0.726
PC-20-32(SF)-2 0.813 PC-40-25(CF1)-0 0.734

PC-25-0-2 0.775 PC-40-25(CF2)-0 0.744

Table B.11: Mean packing density < η > of hydrates.
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B.5 Volume Fraction of Remaining Clinker

Sample fdecCL fcutCL Sample fdecCL fcutCL

C3S-20-0-0 0.249 0.410 PC-30-0-0 0.198 0.181
C3S-20-0-2 0.257 0.407 PC-30-0-2 0.179 0.191

C3S-20-24(SF)-0 0.277 0.523 PC-30-8(SF)-0 0.204 0.173
C3S-20-24(SF)-2 0.252 0.507 PC-30-8(SF)-2 0.178 0.149

C3S-25-0-0 0.184 0.327 PC-30-10(CF1)-0 0.194 0.136
C3S-25-0-2 0.223 0.377 PC-30-10(CF2)-0 0.222 0.232
C3S-30-0-0 0.126 0.335 PC-30-17(SF)-0 0.215 0.247
C3S-30-0-2 0.353 0.360 PC-30-17(SF)-2 0.234 0.235
PC-15-0-0 0.314 0.432 PC-30-21(SF)-0 0.198 0.226
PC-15-0-2 0.346 0.423 PC-30-24(SF)-0 0.273 0.224
PC-20-0-0 0.352 0.333 PC-30-24(SF)-2 0.168 0.205
PC-20-0-2 0.297 0.295 PC-30-25(CF1)-0 0.185 0.162

PC-20-8(SF)-0 0.260 0.308 PC-30-25(CF2)-0 0.199 0.195
PC-20-8(SF)-2 0.280 0.329 PC-30-32(SF)-0 0.236 0.222

PC-20-10(CF1)-0 0.224 0.242 PC-30-32(SF)-2 0.210 0.201
PC-20-10(CF2)-0 0.214 0.281 PC-35-0-0 0.205 0.175
PC-20-17(SF)-2 0.232 0.302 PC-35-0-2 0.196 0.219
PC-20-21(SF)-0 0.286 0.330 PC-40-0-0 0.108 0.106
PC-20-24(SF)-0 0.206 0.327 PC-40-8(SF)-0 0.112 0.119
PC-20-24(SF)-2 0.217 0.324 PC-40-10(CF1)-0 0.151 0.124
PC-20-25(CF1)-0 0.235 0.289 PC-40-10(CF2)-0 0.100 0.081
PC-20-25(CF2)-0 0.249 0.255 PC-40-21(SF)-0 0.157 0.127
PC-20-32(SF)-2 0.295 0.352 PC-40-25(CF1)-0 0.120 0.055

PC-25-0-2 0.219 0.245 PC-40-25(CF2)-0 0.093 0.073

Table B.12: Volume fraction of remaining clinker. fdecCL is the volume fraction estimated as the
volume fraction of the fourth peak in a 4-Gaussian deconvolution of all nanoindentations of
the grid. fcutCL is the volume fraction estimated by filtering out the data with a threshold at
M = 63.5 GPa and H = 3 GPa.
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B.6 Homogenized Properties

Sample Mhom, GPa Hhom, GPa Sample Mhom, GPa Hhom, GPa

C3S-20-0-0 61.7 2.71 PC-30-0-0 36.0 1.01
C3S-20-0-2 60.9 3.15 PC-30-0-2 40.3 1.25

C3S-20-24(SF)-0 65.5 3.31 PC-30-8(SF)-0 41.0 1.33
C3S-20-24(SF)-2 63.8 3.49 PC-30-8(SF)-2 35.0 1.04

C3S-25-0-0 52.0 2.20 PC-30-10(CF1)-0 37.6 1.22
C3S-25-0-2 58.7 2.93 PC-30-10(CF2)-0 38.9 1.15
C3S-30-0-0 47.4 2.07 PC-30-17(SF)-0 42.1 1.61
C3S-30-0-2 53.4 2.74 PC-30-17(SF)-2 40.2 1.35
PC-15-0-0 59.7 2.46 PC-30-21(SF)-0 41.9 1.33
PC-15-0-2 62.0 2.59 PC-30-24(SF)-0 41.4 1.47
PC-20-0-0 45.5 1.63 PC-30-24(SF)-2 41.8 1.45
PC-20-0-2 46.0 1.43 PC-30-25(CF1)-0 40.2 1.25

PC-20-8(SF)-0 50.6 1.84 PC-30-25(CF2)-0 43.3 1.43
PC-20-8(SF)-2 48.2 1.61 PC-30-32(SF)-0 42.7 1.59

PC-20-10(CF1)-0 46.8 1.44 PC-30-32(SF)-2 40.3 1.67
PC-20-10(CF2)-0 49.3 1.61 PC-35-0-0 36.2 0.99
PC-20-17(SF)-2 52.3 2.00 PC-35-0-2 38.5 1.24
PC-20-21(SF)-0 54.7 2.08 PC-40-0-0 30.7 0.89
PC-20-24(SF)-0 48.7 1.76 PC-40-8(SF)-0 32.1 0.92
PC-20-24(SF)-2 53.8 2.32 PC-40-10(CF1)-0 33.2 1.14
PC-20-25(CF1)-0 51.5 1.68 PC-40-10(CF2)-0 32.6 1.22
PC-20-25(CF2)-0 49.9 1.67 PC-40-21(SF)-0 31.8 0.89
PC-20-32(SF)-2 54.3 2.40 PC-40-25(CF1)-0 31.1 0.95

PC-25-0-2 44.4 1.46 PC-40-25(CF2)-0 32.0 1.10

Table B.13: Estimated homogenized indentation modulus Mhom and indentation hardness
Hhom.
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