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A B S T R A C T   

3D printing of yield stress fluids (i.e., materials able to flow like liquids only beyond a critical stress) is opening 
new doors in the fields of construction, food or medicine. The usual printing technique consists to extrude and 
then deposit a filament of yield stress fluid onto the previous layer. One major difficulty is that, during the 
deposition process, some instabilities may appear and have a catastrophic impact on the final 3D structure. Here 
we show that these instabilities can be predicted as a function of the material properties and/or the printing 
parameters. More generally, we study the deposit of a filament from systematic tests with a model yield stress 
fluid, varying the material yield stress value, the distance between the nozzle and the substrate, the extrusion 
velocity, the nozzle diameter, and the nozzle displacement velocity. We show that a diversity of patterns arises: 
drops, discontinuous lines, straight lines, meanders, alternated loops or translated loops. Then, we demonstrate 
that the transitions (frontier curves) between pattern regions can be predicted by theoretical arguments. Finally, 
we present a generic diagram predicting the patterns observed as a function of dimensionless numbers depending 
on the various characteristics of the system. This provides a reference scheme for optimizing practical processes 
or devising specific deposit patterns, valid for a wide range of conditions and yield stress fluids.   

1. Introduction 

Standard additive manufacturing generally involves the deposition 
of successive layers of a liquid initially of low viscosity which may 
rapidly solidify thanks to some temperature decrease or chemical reac-
tion, so that it can withstand the next layer. Such additive 
manufacturing technology has now been applied for decades to visco-
elastic solutions of polymers. There is also a wide range of materials, 
such as foams, concentrated emulsions, dense mineral suspensions, 
physical gels, which may all, in principle, be shaped through some ad-
ditive manufacturing process. The common specificity of these materials 
at the origin of their ability to be printed is that they are yield stress 
fluids, i.e., they behave as solids below a critical stress (i.e., the yield 
stress, here noted τc) associated with a critical deformation, and behave 
as liquids beyond this stress or deformation. In the latter state, they can 
be deformed at will but keep their mechanical properties, which ex-
plains that we globally consider them as fluids [1]. In the last two de-
cades, yield stress fluid printing developed in various fields such as 
construction materials (cement, concrete, raw earth) [2–7], electronics 
[8], energy devices [9], ceramics [10], food industry [11,12], medicine 
[13]. Note that embedded 3D printing also develops, in which an 

initially simple liquid is injected through a yield stress fluid which tends 
to fix its shape [14–17], but this is out of the scope of the present study. 

This rheological behavior has a significant impact on the printing 
conditions if the yield stress is significant with regards to gravity and 
capillary effects, i.e. when τc is in the same order as or larger than the 
characteristic gravity stress ρgh, in which ρ is the material density, g the 
gravity and h a characteristic thickness of the material in the process 
[18], or if τc is in the same order as or larger than σ/h in which σ is the 
surface tension [19]. Under these conditions, the yield stress fluid does 
not spontaneously spread, i.e., it resists gravity and/or capillary effects, 
and finally forms a deposit of significant thickness over the substrate, 
which differs from standard printed polymer-based materials. Another 
difference is that most pasty materials will in general only slowly further 
solidify (for example by drying or setting), which implies that the next 
layers may further deform the initial deposit. Finally, in the case of a 
yield stress fluid, the final shape of the deposit is not directly controlled 
by the nozzle cross section, it a priori depends a lot on the yield stress of 
the fluid. However, it is worth emphasizing that this yielding behavior 
can also be an advantage, as it allows to form, during the flow stage, 
specific, original deposit shapes, which the fluid will then essentially 
keep. 
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In practice, two main situations may be distinguished. Let us assume 
that the nozzle opening is cylindrical and imposes the initial filament 
diameter right after extrusion. If the distance between the nozzle and the 
substrate (plane) is smaller than the nozzle diameter the filament cannot 
simply curve while approximately keeping its diameter; as it is squeezed 
between the nozzle and the plane it has to somehow flow before 
reaching its deposited shape. Then, due to the yielding behavior of the 
fluid, the final thickness of the layer will remain close to the nozzle/ 
plane distance. This situation is called layer (or lace) pressing [20]. It 
allows to have planar surfaces and thus a good adhesion between the 
successive layers. It moreover allows for a proper control of the overall 
geometrical accuracy of the printed element. One drawback is that 
pressing the layer induces an additional pressure to the whole structure, 
which can, in turn, lead to plastic collapse. If, on the contrary, the dis-
tance between the nozzle and the substrate is sufficiently large 
compared to the nozzle diameter, we expect a more limited deformation 
of the filament and, under some conditions, it is possible to get a deposit 
in the form of a continuous filament of thickness equal to the nozzle 
diameter. 

In the present work we focus on the latter case, i.e., when the nozzle/ 
plane distance is larger than the nozzle diameter, a situation which 
occurs in various contexts of additive manufacturing [3,5,6,21–25]. 
Here, we intend to present an overview of the deposit patterns that may 
be obtained depending on the material behavior and system character-
istics, such as the extrusion velocity, the relative velocity between the 
plate and the nozzle, the distance between the nozzle and the substrate, 
and to find some general laws predicting the change of regimes. 

Some aspects have already been studied, for example the formation 
then spreading of a deposit of a filament of yield stress fluid with sig-
nificant capillary effects [26]. The conditions for buckling or tearing of a 
filament on the substrate [25,27], and possible instability in a corner 
[28], have been studied numerically. On another note, significant 
analytical and experimental developments were proposed for elastic 
materials [29,30] and Newtonian fluids [31–36], which surprisingly 
show that similar patterns of filament deposits (i.e., “discontinuous 
line”, “straight line”, “meanders”, “coils”) are obtained, despite the very 
different rheological behavior of these two material types. This simi-
larity might in fact be of great importance for our analysis of yield stress 
fluid deposits, as it was demonstrated that, under some conditions, what 
essentially controls the patterns is the ratio of the length of deposited 
material over the surface to the length of relative displacement (noz-
zle/substrate) during a given time. 

Note that the various fluids mentioned above are yield stress fluids 
possibly also exhibiting some viscoelasticity, thixotropy, aging or setting 
effects [1]. The characteristics of the deposit during a printing process 
will depend on the nozzle dimensions, the relative velocity between the 
nozzle and the ground, but also on these rheological characteristics. 
However, the most important rheological characteristics of these fluids 
in relation to the printing process is their yield stress, since this is the 
main origin of the flow stoppage and final shape of the filament. 

Here we attempt to provide a generic framework of the shape of the 
deposit that may be obtained by extrusion from a nozzle in motion with 
respect to the substrate, as a function of dimensionless parameters 
involving the rheological characteristics of the fluid and the boundary 
conditions of the system. This will be done both from experimental data 
and theoretical considerations. In order to be able to focus on the impact 
of the yield stress only, thus avoiding perturbations due to other specific 
behavior characteristics, we use a model material exhibiting the 
behavior of a simple yield stress fluid, i.e., exhibiting negligible time- 
dependent properties such as viscoelasticity, thixotropy, aging or 
setting. Interestingly, we can prepare this model fluid at different solid 
fractions in a wide range, which allows to cover a large range of yield 
stress values with the same material type, which is hardly possible with 
any other material. This ensures the generality of our findings, which 
cover wide ranges of relative velocities, geometries and material 
behavior characteristics. 

2. Material and methods 

As a model yield stress fluid we used a kaolin suspension, i.e. a 
mixture of water and kaolin (clay). The kaolin particles are platelike 
with an equivalent spherical diameter of 2 µm. A homogeneous sus-
pension is rapidly obtained by hand mixing the powder and water for a 
few minutes. The physical and rheological properties of this material 
were described in a previous works [37,38]. This material essentially 
exhibits a simple yield stress fluid behavior, i.e. with negligible visco-
elastic effects, or thixotropy, aging or setting effects. The rheological 
behavior of the material is generally determined in simple shear, cor-
responding to the deformation or flow obtained when a sample layer is 
sheared by two parallel solid surfaces moving at a different velocity 
along the same direction parallel to the planes. In particular, one can 
thus determine the flow curve, i.e. the set of shear stress vs shear rate 
data in steady state flow, which reflects the flow characteristics in the 
liquid regime. In logarithmic scale such a flow curve exhibits a stress 
plateau at low shear rates corresponding to the material yield stress in 
simple shear (see Appendix 1): no steady state flow can be obtained 
below this value, the material behaves as a solid which can only undergo 
limited deformations. For the kaolin suspensions, still in logarithmic 
scale the flow curves approximately exhibit a similar shape at different 
concentrations (see [38]), i.e., they can superimpose if rescaled by the 
(yield) stress plateau value. As a consequence, we can characterize such 
a material with the help of its yield stress value, which increases with the 
solid fraction of the suspension. Here we will use suspensions with, from 
the smallest to highest concentration, a shear yield stress ranging from 
150 to 1300 Pa, and a density ranging from 1390 to 1590 kg.m-3. 

It is worth noticing that for flows involved in printing processes, 
elongational deformations play a major role, either due to the 
compression of the extruded filament when the extrusion velocity is 
larger than the plane/nozzle velocity, or due to the extension and 
possibly breakage of the filament when the extrusion velocity is smaller 
than the plane/nozzle velocity. An elongational flow strongly differs 
from a simple shear flow: it typically corresponds to the uniform 
extension of a cylinder of material along its own axis. As a consequence, 
the rheological characteristics of the fluid which plays the major role in 
this context is the behavior of the material under simple elongational 
flows. Such a flow is more difficult to characterize, but we recently 
precisely developed an original approach for determining the steady 
state behavior of yield stress fluids under such conditions [37]. It ap-
pears that the corresponding flow curves for different yield stress values 
still superimpose if rescaled by the stress plateau at low strain rates, 
which is in fact the elongational yield stress, and this elongational yield 
stress is proportional to the simple shear yield stress [38]. It follows that 
either the elongational or the shear yield stress can be used as a refer-
ence rheological characteristics for these materials. 

The printing system is a home-made device based on two indepen-

Fig. 1. (a) View of the set up allowing controlled relative displacement of the 
nozzle and the plane. (b) Scheme of principle of the extrusion of the yield stress 
fluid over a moving plane. Note that the real fluid shape depends on the relative 
values of the parameters, as explained in the text. 
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dent devices (see Fig. 1). The first one is an Instron 3600 traction- 
compression machine modified in such a way that the axis moves a 
piston inside a cylinder so as to push the paste through a nozzle of 
diameter D0. D0 was varied between 1.2 and 20 mm. The mean velocity 
of extrusion Ve, i.e. the flow rate divided by the nozzle cross-section 
area, is controlled by the piston velocity which is precisely imposed 
(to within 0.2%). The second device is a plane controlled by a linear 
motor and which can thus be translated over 80 cm at a (translation) 
velocity (Vt) ranging from 1 to 500 mm/s. The extrusion and plane 
translation are thus precisely controlled independently. Note that, since 
the flows are relatively slow, inertia effects are negligible, so that similar 
deposits are obtained whether the plane or the extrusion system is dis-
placed, the only parameter being here the relative velocity between the 
nozzle and the plane. 

Here we study only the first layer of material formed on the sub-
strate. Note that the distance between the nozzle and the plane (i.e., H) 
was always larger than D0, so that the flows are not in the layer pressing 
regime (see Introduction). Moreover, the deposit thickness being smaller 
than the filament diameter, is always smaller than 2 cm, while the yield 
stress is larger than 150 Pa, so that yield stress effects are significant 
with respect to gravity effects (τc is smaller or in the order of ρgh) and 
capillary effects (σ/D0 is in the order or smaller than 60 Pa (using σ =
0.07Nm− 1 [19])). 

3. Experimental results 

Let us consider a typical experiment with the kaolin paste with a 
given nozzle diameter and a fixed plate velocity. We look at the different 
phenomena occurring during the extrusion over the moving plate, for 
different velocities of extrusion and different heights (see Fig. 2). When 
the height is larger than a critical value the filament breaks before 
reaching the plate (H = 7cm in Fig. 2a). The drop size only slightly de-
pends on the extrusion velocity up to a relatively large value of this 
velocity. For a smaller height, the filament reaches the plate before such 
breakage and thus forms elongated deposits (H = 5cm in Fig. 2a). Then it 
takes different shapes depending on the extrusion velocity. For small 
extrusion velocity, the filament, pulled by the plate in contact with it, 
breaks in pieces, thus forming a deposit shape which we call “discon-
tinuous line” (see Ve = 0.55cms− 1 in Fig. 2a). For somewhat higher ve-
locity, it forms a uniform filament lying on the plate, a shape which we 
call “straight line” (see Ve = 1cms− 1 in Fig. 2a). When the extrusion 
velocity is further increased the filament oscillates around its axis, a 
regime which we call “meandering” (see Ve = 1.2cms− 1 in Fig. 2a) and 
finally for even higher velocity it forms loops, first “alternated loops” 
(see Ve = 2cms− 1 in Fig. 2a) and then “translated loops” (see Ve =

3.3cms− 1 in Fig. 2a). To illustrate the generality of these trends we 
carried a similar series of tests with a cement paste which is also a yield 
stress fluid but possibly with more complex addition properties (thix-
otropy). We can see in Fig. 2b that the different trends are very similar: 

filament breakage before reaching the plane for a sufficiently large 
height, then different filament shapes over the plane according to 
different ranges of the extrusion velocity. 

We can now look more precisely at the distribution of these different 
patterns for the kaolin paste in a velocity vs height diagram when H and 
Ve vary over full ranges. Each pattern type is represented by a circle of a 
specific color. The different colors were chosen so as to provide clear and 
nice distinctions between the different regimes. We used the same colors 
for the same regimes all along the paper but, in some cases yellow dark 
was used instead of yellow for the sake of clarity. We obtain a diagram 
(see Fig. 3) in which different regions appear, associated with each of the 
basic patterns distinguished in Fig. 2a. In such a diagram the region of 
continuous deposit is approximately a rectangle situated below a critical 
velocity and a critical height. Inside this region we have a wide area in 
which straight lines are obtained, and three other areas which corre-
spond to successive regions for increasing extrusion velocity, and in 
which we observe meandering, then alternated loops, then translated 
loops. Note that due to their strict definitions we can distinguish without 
ambiguity the regimes of discontinuous lines, alternated and translated 
loops, and the transition from discontinuous to straight lines. Concern-
ing the transition from straight lines to meandering there might subsist 
some ambiguity as there could be some very slight meandering in the 
apparently straight lines. So, our definition of the straight line regime is 
here just the absence of visible meandering at our scale of observation (i. 
e., with eye). Curves associated with the frontier between the adjacent 
regions may be determined from such a diagram. They are built by 
joining all the points located at intermediate distance between two 
adjacent experimental points of two adjacent regions. Thus, we here 
assume these frontier curves follow the exact position of the transition of 
regimes as observed from our tests. However, due to the uncertainty on 

Fig. 2. : Basic patterns observed during the extrusion of a model yield stress fluid (a) (of yield stress 300 Pa) and a cement paste (b) of yield stress about 150 Pa, over 
a mobile plane, for different heights over the plane and different extrusion velocities. Here the nozzle diameter is 1 cm. 

Fig. 3. Patterns of kaolin paste (300 Pa) deposits as a function of the height 
above plane and the extrusion velocity. The plane velocity is 1 cm.s-1 and the 
nozzle diameter 1 cm. 
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the material characteristics during the flow (some slight density het-
erogeneity may develop in the extrusion process of kaolin pastes [39]) 
and the details of the protocol (history of the upstream material flow), 
the frontier curves remain somewhat scattered. This scattering is illus-
trated from reproducibility tests (see Fig. 4) corresponding to three se-
ries of tests, each leading to a diagram of the type of Fig. 3, and carried 
out under the same conditions with the same material. Despite this 
scattering, the frontier curves appear to be robust, as they well super-
impose and finally allow to clearly identify the different regions. 

When varying the material properties, the plane velocity, the nozzle 
diameter, we obtain analogous diagrams, i.e., with qualitatively similar 
shapes of the different regions but with transitions associated with 
different critical velocities or heights. In the following we look in more 
details at the impact of these different parameters, which will provide 
key points for understanding the process. 

3.1. Impact of the material yield stress 

Changing the material behavior (here at different values of the shear 
yield stress in the range 150–1300 Pa induces a significant change of the 
results. A qualitatively similar diagram is obtained in each case: the 
same basic patterns and the same regions separated by frontier curves 
are obtained (see Fig. 5). However, the locations of these frontier curves 
significantly evolve as the yield stress increases. Looking more precisely 
at the data it appears that the difference essentially lies in the fact that, 
as the yield stress increases, the frontier curves look globally similar but 
they extend over a different height value before reaching the regions of 
droplets (see Fig. 6). In fact, they extend to a critical height Hc which 
increases with yield stress, and beyond which droplets are obtained. 

Thus, at this stage, it may be suggested that: i) there exists a reference 
diagram for infinite yield stress, made of frontier curves extending over 
infinite height, and ii) each diagram of frontier curves for a finite yield 
stress value corresponds to the part for H < Hc of this reference diagram, 
in which Hc depends on the yield stress, completed by a region of drop 
formation beyond Hc. 

3.2. Impact of velocity 

We have already seen a first impact of the velocity of extrusion for a 
fixed translation velocity: forH < Hc, when Ve increases we move from a 
discontinuous line to a continuous line region, and then to progressively 
more tortuous deposit shapes for larger Ve (see Figs. 3–5). For H > Hc we 
observe drops for any Ve. This scheme is in fact valid below some critical 
extrusion velocity, typically in the order of 10 cm/s, and Hc does not 

0 10 20 30 40 50
0

1

2

 (mm)H

 Straight line
 Meanders
 Alternated loops
 Translated loops

11  (s cm )eV −

Fig. 4. Frontier curves for 3 series of tests with a kaolin paste (300 Pa) (empty, 
or different types of crossed symbols) carried out under similar conditions, as 
described in Fig. 3. The plane velocity is 1 cm.s-1 and the nozzle diam-
eter 3 mm. 

Fig. 5. : Diagram of patterns obtained during extrusion, over a moving plate (at 
1 cm.s-1) and with a nozzle diameter of 3 mm, of a kaolin paste at different yield 
stresses (see caption). Note that for the largest yield stress value (i.e., 1300 Pa) 
we only determined the critical height for breakage but did not carry out tests at 
heights intermediate between this value and 40 mm, so that the frontier curves 
were simply extended from the latter value along horizontal lines. 

Fig. 6. : Frontier lines between the five different regions of the diagrams of 
Fig. 5. The same symbol filling type (either filled, crossed, lined, empty) cor-
responds to the same yield stress value (see legend), while the same symbol 
type and color correspond to the same frontier type: (from top to bottom) 
discontinuous lines to straight lines (green squares), straight lines to 
meandering (dark yellow circles), meandering to alternated loops (orange di-
amonds), alternated loops to translated loops (red hexagonal). The vertical blue 
rectangles, with the same filling type as for the corresponding yield stress, 
indicate the critical positions Hc associated with the different yield 
stress values. 
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vary significantly in this range. For a larger Ve the drops do not have 
enough time to form and separate before reaching the plane [38] so that 
a continuous though somewhat inhomogeneous line will form on the 
plane. We will not further consider this case in the present results and 
analysis, as it corresponds to rarely used velocity values in practice. 

Finally, we can discuss more globally the impact of the translation 
velocity on the (H, 1/Ve) diagram of patterns. In that aim we can 
compare the diagrams of deposit shapes obtained for Vt = 1cm.s− 1 and 
Vt = 5cm.s− 1. Qualitatively similar diagrams are obtained but with 
frontier curves situated at much lower 1/Ve values for Vt = 5cm.s− 1 than 
for Vt = 1cm.s− 1. This means that at larger translation velocities higher 
extrusion velocities are now necessary to get similar behavior. This 
suggests to consider the ratio of these two velocities as one of the main 
parameters of the process, V∗ = Vt/Ve. Indeed, in a V∗ vs H represen-
tation the two diagrams of the different deposit shape regions appear 
similar, i.e., the limiting curves are similar (see Fig. 7). 

3.3. Impact of the nozzle diameter 

We now vary the nozzle diameter in a wide range, i.e. between 1.2 
and 20 mm. Once again we obtain the same qualitative diagrams 
exhibiting similar regions of basic patterns (see Fig. 8). However, in 
contrast with the case of yield stress variation, the region of continuous 
line does not vary much, it only slightly increases along the height axis, 
the critical height Hc increasing from 40 to 70 mm when D0 is multiplied 
by about 17. An additional, more subtle, difference exists between these 
diagrams: the slope of the straight line frontier curve appears to decrease 
when D0 increases (see Fig. 9a). This suggests that the height at which 
each slope of these curves is associated could increase with the char-
acteristic length of the flow D0. We can check further this assumption by 
plotting the data in a V∗,H∗ = H/D0 graph. Then the straight line fron-
tier curves indeed appear to superimpose (see Fig. 9b). The same su-
perimposition also appears for the meanders frontier curve. Remark that 
for the sake of clarity we did not represent the frontier curves for the two 
other regime transitions (i.e., towards alternated and translated loops) 
as the too large scattering on these curves does not allow to appreciate in 
details the validity of the superimposition assumption. Also note that in 
Fig. 9 the straight line and meanders frontier curves for D0 = 1.2mm 
does not superimpose well onto the curves for the other diameters, i.e., 
they are situated somewhat below the master curves (see Fig. 9b) but we 
have no clear explanation for that, since a potential discrepancy due to 
surface tension effects should also act on the first frontier curve (straight 
line). Finally, it must be emphasized that, in such a representation, the 

critical height for the transition to drops now widely varies with D0 (i.e. 
slightly faster than Hc/D0) 

The results above show that the yield stress has no particular impact 
on the observed patterns, it only impacts the filament shape when the 
latter has not yet reached the substrate. This means that gravity effects 
are negligible as soon as the filament has reached the substrate without 
breakage. Thus the patterns for the filament over the substrate are 
mainly governed by the geometry and the kinematics of the system. In 
the following, we will show that these different trends can be predicted 
from theoretical arguments. 

4. Theoretical analysis 

Our observations of clear trends for the patterns as a function of the 
extrusion velocity, the plane velocity, the nozzle height and diameter 
and the material yield stress, suggest that a rationalization, and even 
theoretical predictions, of these data, are possible. 

In that aim we start by studying the trends observed for a large 
height. In that case the filament has time to elongate and finally break. 
This process has been the object of recent detailed studies [37,38]. The 
filament is deformed under the action of gravity: above the initially 
deformed region (see Fig. 10 a and c, region below A) the material 
elongates in each of its cross-sections as a result of the normal stress 
resulting from the weight of material situated below this section. Due to 
its yield stress fluid behavior, it is deformed up to a finite deformation as 
long as this normal stress is smaller than a critical value, i.e. the yield 
stress for elongation. In that case the material remains in its solid regime 
and it keeps a fixed shape as it further advances (see Fig. 10 b,c). When 
the yield stress is reached in some section (B in Fig. 10 c) the material 
starts to flow in its liquid regime, which means that the deformation is 
not limited any more. The flow is somewhat complex in this region, 

Fig. 7. Patterns of kaolin paste (300 Pa) deposits as a function of the height 
above plane and the ratio of the plane translation to the extrusion velocity, i.e., 
V∗ = Vt/Ve. The nozzle diameter was 1 cm and the plane velocity was either 
1 cm.s-1 (filled colored circles) or 5 cm.s-1 (open colored squares). The regions 
of transition between the different regimes are similar for both velocities. The 
dotted lines correspond to the theoretical frontier curves between the different 
regimes as suggested in the text (see Theoretical analysis). 

Fig. 8. Patterns of kaolin paste (300 Pa) deposits as a function of the height 
above plane and the ratio of the plane translation velocity and the extrusion 
velocity for different nozzle diameters. The plane velocity is 1 cm.s-1. 
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involving shear and extensional components, and implies that a region 
of finite height (see Fig. 10 d,e) is in the liquid regime and will undergo 
large deformations. Finally, the largest deformations are localized in the 
section where the yield stress was first reached, which leads to the pinch 
off of the filament followed by its breakage. Then we get the patterns 
shown in Fig. 11: the drops successively arrive on the plane and form a 
series of aligned mounds separated by a constant distance. 

The above analysis may be used [38] to deduce the critical position 
of the pinch-off as a function of the elongational yield stress (σc,elong.). 

σc,elong. =
mcg
πRc

2 (1) 

In which mc is the droplet mass below pinch-off and Rc corresponds 
to the filament radius at the transition between the solid regime and the 
liquid regime, i.e., in the section B (see Fig. 10c). Its precise value de-
pends on each material, but it appeared to be in the range 0.8 – 0.9 for 
different yield stress fluids [38]. This critical radius is associated with 
some critical strain at the solid-liquid transition, but based on existing 

knowledge it cannot be related to some straightforward comparison of 
the elastic behavior in the solid regime and the yield stress. Indeed, in 
general such materials also exhibit a plastic component in the solid 
regime, which increases as the stress approaches yielding [40]. 

The Eq. (1) may be used to deduce the length of the filament after 
breakage. First of all, we consider that the filament shape in the solid 
region, i.e., between A and B (see Fig. 10c), of length h0, is conical. 
Secondly, we have to take into account, in the mass calculation, the 
previously deformed part (at the filament bottom) of approximately 
conical shape and of length about D0, and the conical part resulting from 
the flow in the liquid region, here below the pinch-off. Assuming R0 − Rc 

is small compared to R0 leads to mc ≈ ρπh0R0Rc + ρπ(4/3)R0
3, and the 

effective length of the filament after breakage is equal to h0 + 2D0, since 
there are now two small conical regions at the bottom and the top of the 
drop. To get the total distance between the nozzle and the plane when 
the filament is just in contact with it, we have to add a conical region 
(below the nozzle) of height D0, so that the critical height beyond which 
we should get drops is: 

Hc ≈
σc

ρg
Rc

R0
−

4
3

R0
2

Rc
+ 6R0 (2) 

Thus, our prediction is that the critical height beyond which we can 
get drops, i.e., filament breakage before it reaches the plane, is equal to 

Fig. 9. Frontier curves between discontinuous and straight lines (squares) and between straight line and meandering (circles) as a function of the absolute height (a) 
or the height rescaled by nozzle diameter (b). Kaolin paste of yield stress 300 Pa, translation velocity 1 cm.s-1. The lines correspond to the theoretical model (see text) 
for the transition between straight lines and meanders (dotted line), and for the transition between discontinuous lines and straight lines (continuous line). 

Fig. 10. Illustration of the different flow regimes during extrusion of a filament 
of yield stress fluid (here Kaolin, 27%, die diameter 2 cm) under gravity, just 
after the fall of the previous drop. Successive images of the filament: (a) Cone 
formed during previous drop fall, (b) and (c) Development of a region deformed 
in the solid regime, (d) and (e) Development of a region in the liquid regime 
and flow in this region. “Reproduced from [A. Geffrault, A., H. Bessaies-Bey, N. 
Roussel, P. Coussot, Instant yield stress measurement from falling drop size: the 
“syringe test”, J. Rheology, 67 (2023) 305-314] with permission from the So-
ciety of Rheology (SOR)[38]. 

Fig. 11. Side view of the filament breakage as drops then forming mounds 
moving with the plane for H > Hc. τc = 300Pa, and V∗ = 1. 
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Hc. We can check the consistency of this prediction with our data, by 
comparing it with the experimental values for Hc as it can be estimated 
from the data of Figs. 6 and 8. We find a rather good agreement between 
the theoretical values (from Eq. (2)) and the experimental values (see  
Fig. 12). The theory appears to slightly overestimate the reality by, on 
average, about 12%. 

Note that surface tension effects are negligible in our case since τc, 
larger than 150 Pa, and a fortiori σc,elong. which is larger than τc [38], are 
much larger than σ/D0, which is in the order of a few Pascals. Moreover, 
this conclusion remains valid during the filament breakage even in the 
pinch-off region, since the normal stress increases with 1/R2 while the 
surface tension stress increases more slowly, i.e., with 1/R. 

4.1. Filament evolution after contact with the plane 

We now consider the case of a filament touching the ground before 
breakage, i.e., H < Hc. In that case the weight of material is mostly 
counterbalanced by the normal force from the plane, and thus plays a 
minor role on the filament deformation (a gravity stress significantly 
smaller than the yield stress inducing negligible deformations). More-
over, we assume a no-slip condition between the filament and the plane. 
This implies that, as soon as it touches the plane, the filament essentially 
moves, with a constant shape, at the speed of the plane. Under these 
conditions, as a first approximation we can see the filament deformation 
as mainly resulting from, at one side, the exit of a filament at a velocity 
Ve, and at the other side, its traction at a rate Vp in a direction perpen-
dicular to the extrusion axis. Thus, from the regime of drop formation 
(H > Hc) to this regime (H < Hc) we turn from a controlled stress flow to 
a controlled strain flow. 

In this context, for Ve = Vp, i.e., if V∗ = 1, we expect to get a 
continuous filament with a diameter equal to that of the nozzle up to the 
plane, which is consistent with the mass conservation. If now Ve is 
smaller than Vp, i.e. for V∗ > 1, we should get an elongation of the 
filament leading to a reduction of its radius (R) since now the plate tends 
to impose a faster motion than the extruder. Finally, for a sufficiently 
large value of V∗, when the deformation imposed to the filament is too 
large we expect a breakage of the filament (not induced by gravity ef-
fects). On the contrary, when Ve is larger than Vp, i.e. when V∗ < 1, we 
expect some compression leading to an increase of the filament radius 
and possibly some instability leading to a large deformation of the 
filament axis. 

These predictions indeed correspond to the different regions in our 
different experimental (V∗,H) diagrams presented above: discontinuous 
line beyond a critical value of V∗, continuous line for V∗ around 1, and 
then compression and/or deformation of the filament below some crit-

ical V∗ value depending on H. 
Actually, the characteristics of the deformation of the material can be 

predicted theoretically in the case Ve < Vt . In that case, we can see the 
development of the process for V∗ sufficiently close to 1 (here 1.5) (see  
Fig. 13a) and for a larger value (here 1.8) leading to filament breakage 
(see Fig. 13b). The flow rate imposed by the extrusion is πR0

2Ve, in 
which R0is the filament radius at the extruder exit. As long as the fila-
ment deposit is straight (i.e., no instability) the flow rate imposed by the 
plane is equal to πRp

2Vt, in which Rpis the filament radius on the plane. 
The mass conservation imposes the equality of these flow rates, i.e., 
R0

2Ve = Rp
2Vt . We deduce that, between the nozzle exit and the plane, 

the filament undergoes a total elongational deformation, i.e., ε = ΔR/R, 
equal to (R0 − Rp)/R0, which thanks to the mass conservation may be 
rewritten as ε = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅
Ve/Vt

√
. In fact, it seems that this deformation is 

rapidly reached after the nozzle exit (see Fig. 13), so that one can 
consider that as a first approximation the filament has a constant radius 
from the nozzle to the plane. Note that above, to estimate the elonga-
tional deformation, we neglected the curvature of the filament induced 
by the traction perpendicular to extrusion direction. This is justified by 
the fact that in this regime, beyond some short distance from the nozzle 
and the plane, the filament curvature remains small (see Fig. 13). This 
assumption (i.e., small curvature) is probably not valid any more when 
H becomes too small, since now the filament has to abruptly turn of 90◦

over a short distance, but it is difficult to evaluate the impact in terms of 
deformation and we will not elaborate further on this point. 

In view of the above considerations concerning the filament 
breakage (under gravity) we expect to reach the liquid regime of the 
material when the deformation reaches a critical value εc, associated 
with the critical radius Rc = (1 − εc)Re, and a plate velocity Vt =

(1 − εc)
− 2Ve, i.e., V∗ = (1 − εc)

− 2. Since the filament radius is obviously 
not perfectly uniform, the critical radius will be reached first at some 
point. Then, we soon get stronger deformations in this region since, in 
the liquid regime, the material can be widely deformed while the stress 
is close to the yield stress. Finally, the stress due to gravity becomes 
dominant and the filament falls onto the plane (see Fig. 13). For the 
kaolin pastes, according to previous observations of drop formation for 
simple flow under gravity [38] we can take 1 − εc ≈ 0.8 for all concen-
trations, which corresponds to Vt/Ve ≈ 1.56. Beyond this value we reach 
the discontinuous line regime. Note that in practice we might have a 
slight deviation from this theoretical value which neglects the filament 
length associated with the flow in the liquid regime in the breakage 
region. 

4.2. Buckling 

We now consider the case of a rate of extrusion larger than the plane 
velocity, i.e., Ve > Vt or V∗ < 1. In that case, if the filament axis does not 
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Fig. 12. : Theoretical prediction (see text) of the critical height (Hc,theo) for drop 
formation as a function of the observed critical height (Hc,exp) in our tests for 
different yield stress values and nozzle diameters. 

Fig. 13. Successive views (time frame of 0.06 s between two successive im-
ages) of the filament aspect in the straight line (a) and discontinuous line (b) 
regime. Yield stress: 300 Pa. 
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deviate from the plane motion direction, it will be compressed up to a 
radius Rp = Re

̅̅̅̅̅̅̅̅̅̅̅̅
Ve/Vt

√
. However, the compression of a material with 

free lateral surfaces is a typical situation for which some instability can 
occur. This is buckling, which results in a deformation of the filament 
axis while its compression is smaller than that expected with compres-
sion only. 

Buckling has been initially analyzed in depth in the case of elastic 
(solid) materials [41–43]. It was also later studied in the case of viscous 
fluids [44–46]. Here we are dealing with the flow of a yield stress fluid, 
for which, as far as we know, no theoretical approach predicting the 
conditions leading to buckling exists. However, we can remark that a 
similar criterion in terms of critical deformation for buckling was ob-
tained for elastic and Newtonian materials [36]. Under these conditions, 
considering that by definition yield stress fluids exhibit rheological 
properties intermediate between an elastic solid and a simple viscous 
fluid, we suggest that the same criterion could be used. According to this 
criterion, obtained from scaling approaches [36], buckling will occur if 
the length of compression (ΔH) induced on the filament is larger than 
D0

2/L, in which L is the length of the filament. 
This criterion can be translated in terms of displacements of the 

filament. Let t0 be the time needed for the filament to reach, as a result of 
extrusion, a length equal to the distance between the nozzle and the 
plane, i.e.,L = H = Vet0. During the same time ΔH is the difference of 
length resulting from the motion of the plane blocking the filament, i.e., 
ΔH = (Ve − Vt)t0, from which we deduce ΔH/H = 1 − Vt/Ve. Our 
buckling criterion then writes: 

V∗ = 1 −
ΔH
H

< 1 −
(

D0

H

)2

= Vc
∗ (3) 

As soon as buckling occurs the filament will undergo very limited 
additional compression and it take different shapes depending on the 
relative values of the extrusion and plane velocities. Under these con-
ditions, the filament behavior is essentially governed by the minimiza-
tion of deformations in a given space, and thus these shapes can be 
expected to correspond to those observed and/or rationalized or pre-
dicted by numerical simulations in the case of simple viscous filaments 
[34,35,47]. Moreover, it was suggested that the patterns are robust with 
respect to a change in the thread rheology, i.e., “the patterns can be 
described quantitatively by a non-linear ordinary differential equation which 
depends on three state variables only, and is geometric in essence." [35], 
which supports the use of these limits for a yield stress fluid. 

Here we suggest to use the mean values obtained by these authors 
[35,48] under different conditions of transitions (which we could not 
distinguish in our case), which gives approximately 0.35 and 0.6, 
respectively for the transition from meandering to alternated loops and 
then to translated loops. As a consequence, for slender filament we 
expect simple meandering as long as 0.6 < V∗ < 1, alternated loops for 
0.35 < V∗ < 0.6 and translated loops for V∗ < 0.35. However, for these 
works concerning other material types no compression and slender fil-
aments were assumed, which in particular led to consider this transition 
from straight lines to meandering for Vc

∗ = 1. In fact, when H ap-
proaches D0 we do not have slender filaments, and we can hardly expect 
another shape than that obtained by simple compression, thus no other 
regime can occur, which can be expressed by considering that the above 
limits between the different regimes fall down to V∗ = 0 when H = D0. 
On the other side we would recover the above limits for slender filament 
for H >> D0. These trends are in particular consistent with the varia-
tions of Vc

∗ as expressed in Eq. (3). Here, our assumption is that we have 
variations of the other limits similar to those of Vc

∗, i.e. the limit be-
tween meandering and alternated loops is 0.6Vc

∗ and the limit between 
alternated loops and translated loops is 0.35Vc

∗. 
To sum up, the different patterns obtained in such a process can be 

predicted theoretically in a general way according to the following 
criteria:  

1) Droplets resulting from flow under gravity for H > Hc  
2) Discontinuous lines due to filament breakage for V∗ > (1 − εc)

− 2  

3) Continuous line for 1 − (D0/H)
2
= Vc

∗ < V∗ < (1 − εc)
− 2  

4) Meandering for 0.6Vc
∗ < V∗ < Vc

∗

5) Alternated loops for 0.35Vc
∗ < V∗ < 0.6Vc

∗

6) Translated loops for V∗ < 0.35Vc
∗

This gives the universal mapping of the patterns as represented in  
Fig. 14. 

We can now review the results to appreciate the agreement of this 
general theoretical diagram with the reality. The frontier curve between 
discontinuous line and straight line indeed approximately corresponds 
to a horizontal line in any case, as described here by the theory, i.e., 
depending only on the critical deformation of the material type, as may 
be seen from its constant level around V∗ = 1.5 whatever the system 
characteristics and material yield stress (see e.g., Figs. 6, 7, 9). The 
frontier curve for the transition to drops is indeed a vertical line (see 
Fig. 7) located at a critical value for H which essentially depends on the 
material yield stress but also on the filament diameter, according to Eq. 
(2) (see Fig. 12). Finally, the data well superimpose when represented in 
a diagram V∗ vs H∗ for a fixed yield stress value (see Figs. 7, 9) and the 
frontier curves are in excellent agreement with the theoretical ones 
indicated above (see e.g., Figs. 7 and 9). 

Note that along all the above considerations we implicitly assumed 
that only the geometrical characteristics including the velocity ratio, 
and the yield stress through the critical height for breakage, govern the 
deposit shape characteristics. Actually, the typical behavior of a yield 
stress fluid beyond the yield stress, i.e., in the liquid regime, is described 
by a constitutive equation in which the stress is the sum of a constant 
term (the yield stress) and a term depending on the shear rate [1], which 
is in fact the local gradient of velocity. The most frequently used model is 
the Herschel-Bulkley model (see Appendix 1), which allows to represent 
the simple shear behavior in a wide range of shear rates [1]. As long as 
the second term of the model is negligible compared to the yield stress 
the stress is approximately equal to the yield stress so that the response 
of the material to deformations essentially involves stress values close to 
the yield stress. For a material whose behavior is represented by a 
Herschel-Bulkley model, the ratio of the velocity dependent term to the 
yield stress may be estimated through the Bingham number Bi =

τc/k(γ̇0)
n, in which γ̇0 is a characteristic shear rate of the flow. A similar 

expression with now the elongational yield stress and a characteristic 
elongational rate may be used if extensional flow is dominant. However, 
for our experiments, considering the diversity and complexity of flow 
characteristics in the different regions of the filament and in the 

Fig. 14. Universal mapping of patterns obtained by extrusion of a yield stress 
fluid filament over a moving plane, as a function of the velocity ratio and the 
height rescaled by the nozzle diameter. The frontier curves are represented as 
dotted lines, associated with the mentioned equations (using here 1 − εc =

0.8). Note that the position of the frontier curve for drop formation depends on 
the yield stress value through the value ofHc. 
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different regimes, it does not appear possible to provide complete pre-
cise estimations of the characteristic shear or elongational rate. An 
additional complication is that this approach is valid only in the liquid 
regime of the material, and we cannot really determine the flow regime 
at the different steps of the flow but it is likely that the fluid remains in 
its solid regime during a significant fraction of the flow until it finally 
fully stops over the plane and remains rigid. This complexity justifies 
that we rely on the consistency of our data with regards to the variation 
of the different parameters and the analysis in geometrical terms, along 
with the absence of impact of the velocity ratio in our range of tests, to 
conclude that the yield stress is the only rheological parameter playing a 
role in this context. 

5. Conclusion 

This work shows that it is possible to predict the different patterns 
which can be obtained during the printing of yield stress fluids on the 
basis of a minimal knowledge of the system. A mapping of these patterns 
may then be drawn as a function of the ratio of plane velocity to 
extrusion rate and the height rescaled by the nozzle diameter. Two 
frontier curves depend on the rheological characteristics of the fluid, 
more precisely its critical deformation and yield stress associated with 
the transition from the solid to the liquid behaviour in elongation. These 
parameters may be estimated from independent tests of filament 
breaking in drops under gravity [34]. Here we considered a simple yield 
stress fluid, but we can expect these results to well apply as a first 
approximation to more complex materials exhibiting some elasticity, 
aging or thixotropy, as long as the yielding effect is dominant. 
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Appendix 1. Flow curve of a kaolin paste  

Fig. 15 shows the typical behavior of a kaolin paste, as it is obtained from simple shear rheometrical tests. Here a decreasing shear stress is 
progressively applied (in a parallel disks geometry [34]) and the corresponding shear rate (velocity gradient) at each level is recorded.

Fig. 15. Flow curve of a kaolin paste. The dotted line shows the flow curve of a Newtonian fluid. The continuous line is a Herschel-Bulkley model (τ > τc⇒τ = τc +

kγ̇n, in which γ̇ is the shear rate and k and n are two material parameters) fitted to these data with τc = 310Pak = 80Pa.s− n and n = 1/3. 
. 
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