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ABSTRACT

Liquid foams are destabilized by three coupled processes: gravity drainage, coalescence (fusion
of bubbles) and coarsening (gas transfer between bubbles due to differences in capillary pressure).
To focus on coarsening, coalescence can be suppressed by using suitable surfactants, but it is more
difficult to suppress drainage, especially in wet foams where the liquid volume fraction is so large
that bubbles are approximately spherical. To investigate the structure and time evolution of such
foams, we have performed experiments in the International Space Station. Our observations reveal an
unexpected excess of small bubbles, moving in the interstices of the randomly close-packed network
of larger bubbles. These "roaming bubbles" naturally appear during the coarsening process. They
were seemingly overlooked in previous ground-based foam coarsening experiments. We have indeed
detected roaming bubbles by performing complementary studies of moderately wet foams φ . 10%
where gravity can be counteracted on Earth by sample rotation. In foams with liquid fractions beyond
the random close packing fraction of sphere dispersions with the same polydispersity as in our
samples (φ > φrcp), the excess of small bubbles disappears, but we observe that bubbles still tend
to remain connected due to weak adhesive interactions. A second transition is observed at a larger
liquid fraction φ∗, above which the bubble size distribution narrows, becoming similar to the one
previously reported for dilute coarsening dispersions (Ostwald ripening regime). We present models
that identify the physical mechanisms explaining our observations. Our results suggest that, when
solidified, coarsened wet liquid foams naturally have both macropores (foam bubbles) and micropores
(roaming bubbles). Materials with such hierarchical structures can exhibit enhanced mechanical
strength to density ratios.

Keywords Foams · Coarsening · Ostwald Ripening

Significancy Statement

Liquid foams are a dispersion of bubbles that have many applications where stability needs to be controlled. Bubble
coalescence is easily suppressed, yet samples age by a combination of drainage due to gravity and coarsening due to
diffusive gas exchange between bubbles. To suppress drainage and isolate the mechanism of coarsening, we studied
foams on the International Space Station in the range of liquid fractions 15% < φ < 50%, where they are exceedingly
difficult to study on Earth. Our experiments reveal an unexpected excess of small bubbles, which is at odds with existing
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theories and previous experimental results. The natural bubble size distribution created by coarsening makes wet liquid
foams prime precursors in the production of hierarchical porous solids, presently the object of much interest.

1 Introduction

In two-phase systems such as alloys, foams and emulsions, the sizes of grains, bubbles or drops evolve due to the
diffusion of the dispersed phase through the continuous phase, from small domains with larger chemical potential,
which shrink, towards larger ones with lower potentials, which grow. The theory of this process was elaborated by
Lifshitz & Slyosov [30], and by Wagner [49], for highly diluted dispersions of precipitates. This theory also applies
to dilute emulsions and bubbly liquids [46] where it is called Ostwald ripening. In agreement with experiments, the
theory predicts that after a long time the domain size distribution, scaled by the average domain size, becomes invariant
with time, a feature called statistically self-similar growth [36]. In the Scaling State, the average domain size evolves
asymptotically with time t as t1/3. The theory has been extended to smaller continuous phase volume fractions φ down
to φ = 0.7 [2].

Domain growth due to diffusion is also observed in systems with continuous phase volume fractions so small that
neighboring domains are in contact, such as foams (see Figure 1a); in this case, the process is called coarsening. When
the liquid fraction φ is decreased below a critical value, φrcp, contacts between neighboring bubbles are formed and
their shapes progressively evolve from spheres to polyhedra in the limit φ → 0 [5]. Equilibrium films separating
neighboring bubbles are generally common black films with thickness of a few tens of nanometers. They are connected
three by three to channels called Plateau borders, themselves connected at vertices. For disordered monodisperse
foams, φrcp ≈ 36%, and φrcp is expected to decrease slightly as polydispersity increases [13]. Experiments with 3D
foams of small liquid fractions have shown that the average bubble radius grows at long times as t1/2 [10, 27, 21, 7], in
contrast with the t1/3 scaling observed in the case of Ostwald ripening. The modification of the exponent is related to
the mechanism of gas transfer between bubbles. In dry foams, it occurs mostly through the thin films between bubbles,
whereas in bubbly liquids, gas is transferred through bulk liquid [36]. Another important feature of coarsening is the
shape of the bubble size distribution. Several experimental and numerical works [15, 26, 32, 27, 47, 51] show that the
normalized distribution is asymmetric, of the Weibull or lognormal type, in the regime associated with the t1/2 growth
law, whereas for the t1/3 regime, it is more symmetric and narrower [30].

Foams are not only interesting model systems for coarsening studies, they have numerous practical applications.
Solidifying the continuous phase of liquid foams yields solid foams which inherit the structure of their precursors [50, 5,
28, 17]. They are widely used for packaging, insulation or as lightweight construction materials such as foamed cement
or metallic foams. Their solid volume fraction is frequently chosen between 20% and 50%, for instance, to confer
sufficient mechanical strength [17]. The solid foam microstructure has an impact on its mechanical properties, for a
given density. Hierarchical foam structures were predicted to have an order of magnitude improvement of mechanical
strength to weight ratio with just two levels of hierarchy (large bubbles and much smaller bubbles in the interstices
between them) [25]. Therefore, such hierarchical structures self-generated by foam coarsening, as we report here, could
be of great interest for applications.

Foams are metastable systems and evolve with time not only because of coarsening but also due to gravity drainage [43,
5], and possibly due to rupture of liquid films separating neighboring bubbles, called coalescence. Since gravity drainage
and coarsening are coupled, studying and modelling coarsening requires gravity drainage to be suppressed. Pioneering
foam coarsening experiments were performed with dry horizontal 2D foams (single layers of bubbles) where drainage
was not an issue [45]. Studies of 3D foams on Earth are generally restricted to small liquid fractions φ� 0.1, where
drainage is slow enough [4, 10]. To rule out artifacts related to gravity in 3D foams whatever the liquid fraction, we
have performed foam coarsening experiments in microgravity, on board the International Space Station (ISS), where
drainage is suppressed. Samples with arbitrary liquid volume fractions φ can thus be studied over long times, up to
several days, as required to investigate the Scaling State of foam containing a significant fraction of liquid.

2 Results and Discussion

2.1 Excess of small bubbles

We have investigated foam coarsening for liquid fractions between 15% and 50% using the instrument described in [3].
Details can be found in the Materials and Methods section. From the sample surface observations (a typical image is
shown in Fig. 1a), we measure the bubble sizes using image analysis, and determine the bubble size distributions of
the radius normalized by its average ρ = R/〈R〉. The initial size distributions produced by our experimental setup
are asymmetric (positive skew) with a maximum at ρ ≈ 0.6 (see Figure 1b for foam with 15% liquid fraction as an
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Figure 1: Excess of small bubbles. (a) Image of foam surface (φ = 15%) in the Scaling State regime. Yellow stars have
been superimposed on the image to highlight the small bubbles corresponding to the sharp peak in the distribution shown
in (b). (b) Probability density function of normalized bubble radius ρ = R/〈R〉 at different foam ages as indicated, for
a foam with liquid fraction φ = 15%. The curve corresponding to age > 2000 s represents the Scaling State regime, for
which the normalized distribution no longer evolves. Inset: evolution of the proportion of small bubbles as a function of
time. The number fraction fsmall is obtained by dividing the number of bubbles with radius R < Rt by the total number
of bubbles in the sample (see Section 2.2 for details). A change in Rt by ±5% induces a variation of fsmall smaller than
the point size. (c) Probability density function of normalized bubble radius at different ages as indicated, for a sample
with liquid fraction φ = 8% studied on ground.

example). The normalized size distributions broaden with time, and a sharp peak builds up progressively for small
bubble sizes, i.e. ρ ≈ 0.3, until a stationary form is reached, indicating a Scaling State. This is shown in Figure 1b
for times t > 2000 s. This evolution is typical of the measurements we have made for foams with liquid fractions
within the range 15% ≤ φ < φ?, with φ? ≈ 39%. The small bubbles corresponding to the peak in the distribution are
highlighted in Figure 1a. After an increase in the transient regime, they finally represent about 35% of the total bubble
population in the scaling state (inset of Figure 1b). We also measured the number of those small bubbles per foam
vertex to reach a maximum average value of 1.5, due to space limitation in the vertices. As a consequence, the size
distribution becomes invariant in time (statistically self-similar) as observed.

Up to now, such an excess of small bubbles has not been reported in the literature [32, 15, 27, 51]. In order to check if
distributions with an excess of small bubbles are also found in drier foams, we have performed coarsening experiments
using the same surfactant and a liquid fraction of 8%, low enough for gravity effects to be compensated in a ground
based experiment by rotating the cell around a horizontal axis (clinostat). As shown in Figure 1c we observed a similar
excess of small bubbles. The small bubbles were thus seemingly present, but not detected in previous studies. This is
probably because high spatial resolution together with a careful image analysis are needed [39]. The only experimental
work we have found that indirectly relates to this is that of Feitosa and Durian [15], which reports the development
of transient bidispersity for initially monodisperse bubbles in a Steady State column, where drainage and coarsening
occur simultaneously. In their simulations of 2D foam coarsening, Khakalo et al [24] have observed an excess of small
bubbles but the gas transfer through interstitial bulk liquid was not taken into account. For φ > φ? we have observed a
different scenario: the initial bubble size distribution shrinks until a steady state is reached where the size distribution is
notably narrow (see Fig. S1 in the SI). The latter distribution is reminiscent of the theoretical distribution predicted for
the Ostwald regime [30, 49]. Around φ∗, a change in the growth laws for the average bubble size is also observed for
the same foam samples [39]:

R2
32(t) = R2

32(0) + Ωp t for φ < φ∗ (1)

R3
32(t) = R3

32(0) + Ωc t for φ > φ∗ (2)
The Sauter mean radius R32 = 〈R3〉/〈R2〉 is defined as the ratio of third to second moments of the bubble radius
distribution.

2.2 Transition from foam bubbles to roaming bubbles

To clarify the origin of the hierarchical bubble population, we have identified bubbles that eventually disappear
and tracked evolution of their area. Figure 2a shows examples of such measurements in a foam with φ = 15%.
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Figure 2: Roaming transition: (a) Evolution of the area of individual bubbles as a function of foam age measured as the
time elapsed since the end of the foam sample production, for φ = 15%. The area At = πR2

t denotes the bubble area
at the wall when its shrinking abruptly slows down (see text). Each label corresponds to a different bubble. (b) The
transition to the very small shrinking rate was observed to occur when the foam bubble has become so small that it fits
inside the interstice between neighboring larger bubbles. The corresponding geometrical transition can therefore be
described as follows: When its radius is larger than Rt, the small bubble is a foam bubble, in the fact that it shares thin
liquid films with its neighbors. In contrast, as its radius reaches values smaller than Rt, the bubble loses its contacts with
its neighbors: it becomes a roaming bubble and its shrinking rate is strongly decreased. (c) Coefficient xn = Rt/R32

as a function of φ. Filled orange disks: values deduced from the tracking of individual bubbles. Error bars show ±3SD,
to highlight the observed variability. Black stars/drawings: calculation of xn from the size of a hard sphere (in red) that
can be inserted into the interstice formed by three spheres at the wall, assuming either a compact bubble cage (bottom)
or slight loosening (top) of the latter. The dotted line corresponds to equation 4 with ξ = 2.2.

Similar data are shown for other liquid fractions between φ = 20% and φ = 33% in the Supplementary Information
(cf. Figure S2). Over time, the individual bubble area can either increase or decrease, depending on the bubble’s gas
exchanges with its neighbours, but most of the observed bubbles eventually shrink (see Figure 2a). The magnitude
of the shrinking rate appears to be initially similar to that characterizing the initial growing rate. Then, a transition
occurs and the area decreases much more slowly. Actually, the shrinking after this transition can be extremely
slow, and we think this is the underlying mechanism explaining why a peak at smaller than average bubbles builds
up in the size distribution. Remarkably, the bubble radius at the transition, Rt, is such that its area At = πR2

t
increases linearly with time, which is similar to the evolution of the squared mean radius in the Scaling State
(Eq. 1). Moreover, the transition to the very small shrinking rate appears to occur when the bubble has become
so small that it fits inside the interstice between three larger bubbles at the surface, and possibly loses contacts
with them as sketched in Fig. 2b. (See movies S1-S3 in the SI.) They are free to move throughout the interstice
without being pressed against multiple neighbors. Such small bubbles can have different configurations in the
interstice, i.e. near the center of the interstice or in contact with one bubble or two bubbles, but these configurations
do not last for the entire life of the bubbles because their positions are jostled as the foam bubbles intermittently
rearrange due to the coarsening induced dynamics [8, 5]. We call them roaming bubbles. Note that they are
reminiscent of rattlers (grains carrying no force) in granular media [1]. We conjecture that the bubble size at the
transition,Rt, should scale as the maximum radius of a sphere that can be trapped in such an interstice at the wall surface.

In a coarsening foam that has reached the Scaling State, there is only one independent length scale of the bubble
packing structure. Since the bubbles that form the interstices are bigger than the encaged roaming bubbles, we chose
to characterize their average size by the Sauter mean radius. With respect to 〈R〉, R32 indeed represents mainly the
average radius of the larger bubbles of the distribution and minimizes the contribution of the small bubbles. At a time t,
the maximum radius of a sphere trapped in such a vertex can be written, on average:

Rt(t, φ) = xn(φ)R32(t) (3)

where xn(φ) is a dimensionless geometrical coefficient. We show in Figure S3 of the SI the plots of Rt versus R32 for
each liquid fraction. The plots are reasonably described by equation 3, allowing determination of the average coefficient
xn for each liquid fraction (see Figure 2c). xn(φ) varies from 0.25 to 0.55 as φ varies from 15% to 38% respectively.
Using those xn values, the transition radii Rt collapse on a linear master curve when plotted versus xn(φ)R32 (cf.
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Figure S3 of the SI).

We have performed a geometrical calculation of the size of the interstice between a plane and three perfect spheres
of equal radius R32 in contact together and with the plane (see Figure 2c). This leads to xn = 1/3. This value
is smaller than what is measured for liquid fractions corresponding to the bubble random close packing fraction,
i.e. φrcp ≈ 31% (see section 2.4 for more details), beyond which the bubbles are spherical. As the liquid fraction
gets close to φrcp, the foam osmotic pressure, which pushes neighboring bubbles against each other at contacts,
becomes very low, and it can be inferred that the cage formed by the triplets of bubbles of radius R32 loosens. Note
that such a geometrical loosening effect is general and independent of friction [9]. Therefore, as a correction to
the previous calculation, a distance εR32 is added around each sphere (see Figure 2c). The coefficient now reads:
xn =

ε(2+ε)+ 4
3
(1+ε)2

2(2+ε) ≈ 1
3 + ε, and it increases significantly due to the loosening effect: assuming a moderate loosening

ε ≈ 0.2 gives xn ≈ 0.53 which is in better agreement with our measurements (see Figure 2c and movie S2). It is
reasonable to assume that polydispersity may also impact the size of the interstice. This effect can be estimated
by considering two bubbles of size R32 and a third one with size βR32. It can be shown that in such a case, the
coefficient reads xn ≈ 1

3 + 0.11(β − 1). Therefore, the magnitude of the polydispersity effect is much weaker than
the previous one, in addition to the fact that it can work in both directions, depending on the value of β, which we
observed to vary in the range 0.3 < β < 1.5 (see Figure S4 of the SI). However, it is worth noting that a significant
fraction of bubbles have a radius larger than R32, i.e. 1 ≤ β ≤ 1.5, and that almost half of the nodes are bounded
by one such large bubble (see Figure S4 as an example for foam with 15% liquid). These findings suggest that
the effect of polydispersity is only slightly positive, and should only slightly increase xn i.e. the size of the wall
interstice. We conclude that the loosening of the bubble packing is the main effect accounting for the measured xn values.

To extend our prediction to any liquid fraction φ ≤ φrcp, we turn to [31], where the radius of passage of a hard sphere
through the liquid channels (so-called Plateau borders [5]) was determined as a function of φ and bubble radius R in a
monodisperse foam. Due to uniformity of the capillary pressure through the foam, which sets the radius of curvature of
the channels, and thus their cross-section, the bubble radius at the transition Rt should be proportional to this radius of
passage. Following the approach proposed in [31] we refer to the effective pore radius introduced by Johnson et al. [22]:

Λ ≈ (8
∼
k/
∼
σ)1/2R, where

∼
k is the dimensionless liquid Darcy’s permeability through the foam structure, i.e. k/R2, and

∼
σ is the ratio of the electrical conductivity of the foam to that of the foaming liquid. Therefore, the expression sought
for xn is:

xn = ξ(8
∼
k/
∼
σ)

1
2 (4)

where ξ is a geometrical coefficient to be determined. Note that the latter is expected to account for the loosening and

polydispersity effects discussed previously. To continue we now need expressions for
∼
k and

∼
σ. Since Λ was initially

proposed for solid porous media, the permeability should correspond to foam having rigid interfaces to mimic solid-like

boundary conditions. As studied by Rouyer et al. [41], its expression is given by:
∼
k = φ2/(312(1− 2.15φ+ 1.37φ2)2)

within the range of liquid fractions 1% ≤ φ ≤ 40%. For foams and bubbly liquids, Feitosa et al. [14] proposed an
approximate analytical expression for

∼
σ, i.e.

∼
σ = 2φ(1 + 12φ)/(6 + 29φ − 9φ2). Using these expressions, we set

ξ = 2.2 in equation 4 in order to get a predicted value of xn close to the measured value 0.53 for φ ≈ φrcp (see
Figure 2c). Remarkably, the agreement with our experimental data is very good over the whole range of liquid fractions,
which reinforces the physical picture that Rt actually corresponds to the size of the interstices formed by the foam
bubbles around the roaming bubbles. Note that in all of the above, nothing is really specific to the fact that we are
looking at the wall. In bulk, typical interstices are formed by four bubbles in a tetrahedral assembly. The geometrical
calculation for four bubbles in contact gives

√
3
2
− 1 ≈ 0.225, compared to 1/3 at the wall. Therefore we can estimate

xn for bulk by using equation 4 with coefficient ξ = 2.2 × (0.225/0.333) ≈ 1.5. Provided this value is used, the
behavior observed at the wall should be similar to the behavior observed in the bulk of the foam.

2.3 Dissolution rate of the roaming bubbles

In this section, we focus on the dissolution rate of the roaming bubbles in the range φ < φ∗. We first consider the data
for times longer than those that mark the intersection of the dissolution curve with A(t) = πR2

t (Figures 2a and S2 in
the SI). We follow the evolution of the radius of roaming bubbles R(t) for R(0) . Rt. For comparison, we similarly
analyze individual bubbles roaming in the bubbly liquids (φ > φ∗), from the instant they start to continuously shrink.
Several examples of the curves are presented in Figure 3a. We observe that the following function fits well all the
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Figure 3: Roaming bubble dissolution: (a) Radius evolution of dissolving roaming bubbles where each curve represents
a single bubble. The solid lines correspond to fits of Eq. 5. (b) Average shrinking rate of roaming bubbles Ωr as a
function of liquid fraction compared to the growth rate of average bubble size in the foam Ωp (Eq. 1, data from [40]).
The lines are guides to the eye. Ωr values fall within the range (highlighted in green) predicted by the shell model
(Eq. 1 in the SI), schematically illustrated by the inside drawing. Error bars correspond to ±1SD. The growth rate Ωp
is strongly dependent on the liquid fraction, at the difference of the dissolution rate Ωr. (c) Measured shape parameter
σ2 of the foam bubbles size distribution (Eq. 6 in the SI) as a function of liquid fraction (blue circles). The (orange)
continuous line represents the maximum packing volume fraction predicted for a lognormal distribution of spheres
with shape parameter σ [12, 13]. The gray vertical area highlights the range where σ and σ2 coincide, from which we
deduce φrcp ≈ 30− 32%. This also corresponds to the range of liquid fractions where Ωr is comparable to Ωp in b.
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curves[11, 34]:
R2(t) = R2(0)− Ωrt (5)

where the only fitted parameter Ωr represents the dissolution rate of the roaming bubble. Such fits were performed for
all the liquid fractions and the average values of Ωr are presented in Figure 3b. Ωr is found to depend only weakly on
liquid fraction: Ωr ≈ 1− 2 µm2/s. We also plot on Figure 3b the growth rate Ωp that characterizes the coarsening of
the foam in the Scaling State (Eq. 1). It appears that Ωp � Ωr for φ . φrcp ≈ 31%, and Ωp ≈ Ωr for φrcp < φ < φ∗.
This comparison reinforces our discussion in section 2.1: the size of the roaming bubbles, represented on the left side of
the distribution, varies more slowly than the average bubble size. As a result, the roaming bubbles accumulate in the
interstices formed by the larger bubbles.

As the dissolution rate Ωr plays a crucial role in the accumulation mechanism of the roaming bubbles, we seek here
to understand this value. The starting point is the comparison of our data with theory for the dissolution of isolated
bubbles [11, 34], which gives the steady dissolution rate far enough from the final instant of bubble disappearance
as: Ωr = −dR2/dt = 2DmVm (c(R)− c∞) = 2DmVmHeP0(1− ζ), where the saturation parameter ζ = c∞/HeP0

characterizes the gas saturation of the liquid environment, c(R) and c∞ are respectively the gas concentrations in
the liquid at the bubble surface and at infinity, P0 is the gas pressure at infinity, He and Dm are respectively the
Henry solubility and the diffusion coefficient of the air molecules in the foaming solution. Vm is the molar volume
of the gas at the pressure P0. From the measured Ωr, we deduce an effective value for the saturation parameter:
ζ = 0.973− 0.987, which suggests that the bubbles dissolve faster than if they were isolated, and despite the presence
of the large neighbouring bubbles which impose at their interface a gas concentration larger than HeP0. To explain this
apparent contradiction, it is important to understand that the gas transfer is controlled by the concentration gradient, and
not only by the concentration difference. Due to the short distances involved between the roaming bubble interface
and the interfaces of the large neighbouring bubbles, the concentration gradient around the roaming bubble reaches
relatively high values compared to the case of the isolated bubble. Therefore, to mimic this situation, we consider
the configuration illustrated in the inset of Figure 3b, where a roaming bubble of radius R is centered in a cavity of
radius Rt, and is surrounded by a liquid shell of thickness Rt −R. The local concentration at the outside boundary of
the shell is estimated as that at the surface of a bubble of average size R32. From Fick’s first law, we then predict the
bubble dissolution rate Ωr in that shell environment (See more details in the SI). For the range of values of R32 in the
scaling state in our experiments and typical ratio R/Rt, we expect Ωr ≈ 0.75− 4 µm2/s which provides boundaries
consistent with the measured values of Ωr (cf. Fig. 3b).

A drawback of this shell-like model is that the roaming bubble is assumed to remain at the center of the interstice,
which is not always the case. Indeed, we often noticed transient apparent contacts between the roaming bubble and
either one of the bubbles delimiting the interstice or two larger bubbles forming a corner. These transient contacts can
result from adhesive forces. We have indeed observed that under microgravity conditions, persistent aggregates form
spontaneously in dilute bubble dispersions. In complementary ground-based experiments, we have observed a contact
angle close to 3− 4o [40]. The underlying configuration may be an adhesive contact with the formation of a liquid film
that slightly flattens the bubbles or it can be a near-contact with a small separation distance so that the roaming bubble
is spherical. Since it was not possible to distinguish between these two types of contact, we estimated the dissolution
rate for both cases (See details of the calculation in the SI). In the range of average bubble sizes R32 of our experiments,
assuming a film thickness effective for the transport of gas of the order of 40-60 nm [40], we found that the expected
rates fall within the range of values measured for Ωr. This remains broadly true if the bubble is in a corner, where
the corresponding dissolution rate is twice larger. Therefore, whatever the configuration considered for the roaming
bubble in the interstice, we find values for its dissolution rate that are compatible with our measurements, which gives
robustness to the proposed mechanism based on the accumulation of long-lasting roaming bubbles in the foam interstices.

2.4 Bubble size distributions and random close packing fraction in the Scaling State

Let us analyze now the role of liquid fraction on the distribution shape. Details on the analysis are given in the SI.
Figure 4 shows the normalized bubble size distributions observed in the Scaling State for each sample liquid fraction.

The PDF for φ = 15% is the same as that of Figure 1 in the Scaling State. It exhibits a prominent narrow peak, that we
identified to the roaming bubble population in Section 2.1, followed by a broad peak for the foam bubble population.
These features qualitatively persist up to φ < 38% but the narrow peak progressively shifts towards larger ρ while its
height decreases. For φ ≥ 40%, PDFs exhibit a single peak, which is consistent with the fact that all bubbles should be
roaming bubbles. PDFs become narrower as φ increases and their peak height increases. This qualitative change is also
captured by the abrupt variation of statistical quantities like polydispersity and standard deviation (cf. Fig. S5 of the SI).
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Figure 4: Bubble size distributions of normalized radius ρ = R/〈R〉 for each liquid fraction as labelled. The data are
represented by black continuous lines. The green dashed lines represent the bi-lognormal PDFs (see Eq. 6 in the SI)
fitted to the data. The red (resp. blue) shaded area corresponds to the roaming bubble PDF w L(r;m1, σ1) (resp. to the
foam bubble PDF (1− w) L(ρ;m2, σ2)) with the parameters given in Fig. S5 of the SI. In the plots for φ up to 38%
the width of the roaming bubble distributions is characterized by ρt, defined in Eq. 8 in the SI. For φ = 15%, the dotted
line is the PDF predicted for wet foams by Markworth [33] based on Lemlich’s model [29] for that φ. As a comparison,
for φ = 50%, the dotted line is the LSW prediction [2] (φ = 1).

None of the existing theories predict such distributions [2]. These findings indicate a cross-over between qualitatively
different PDFs occurring for a liquid fraction φ? ≈ 39%. This transition coincides with the observed change of growth
laws Eq. 1 and Eq. 2 and it is attributed to the onset of the formation of a foam gel due to weak attraction between
bubbles as evidenced by finite contact angle at films junctions [40].

The expected jamming liquid fraction for randomly close-packed monodisperse hard spheres is φrcp = 36%. However,
polydispersity will reduce this value since smaller bubbles can fit into the interstices between larger ones. This effect
has been predicted by numerical simulations of polydisperse close packings of spherical particles with lognormal PDF,
as a function of the shape parameter σ [12, 13]. In our foams, the close packing concerns the population of foam
bubbles, which are connected to each other via films. Therefore, we compare the measured shape parameter of the
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foam bubble distribution σ2 to the predicted ones (cf. Fig. 3c). We find them to coincide within the range φ = 30% and
φ = 32%: we expect the close packing fraction φrcp of our foams to lay inside the range between these 2 values.

To provide an independent result of the close packing fraction of frictionless spheres with the polydispersity observed in
our samples in the Scaling State, we have performed molecular dynamics simulations. Since here we are only interested
in the geometrical sphere packing problem at the jamming point where the confinement pressure and interaction forces
drop to zero with increasing φ, we expect the nature of the interaction law used in the simulations to have only a minor
impact. Using Hertzian interactions, in the framework of the molecular dynamics code LAMMPS (see Materials and
Methods), we obtained φrcp = 30.5± 0.5%, in remarkable agreement with our analysis based on the work of Farr and
Groot [13]. Note that strictly speaking, our simulations only provide an upper bound for the optimal random close
packing fraction of such polydisperse spheres, which may be obtained by more sophisticated simulation procedures
described in the literature [23]. However, in the context of our experiments, the truly relevant packing fraction is the
one of a coarsening foam. In this case we expect a local packing which is not exactly the most compact possible one. A
jammed foam regularly undergoes rearrangements, helping it to settle into new minimal energy configurations. This
implies that in between rearrangements, the packing is not always optimally close-packed. Simulations of this where we
also replace the Hertzian interaction by the more realistic Morse Witten law [35, 20] are the subject of ongoing work.

2.5 Potential consequences on foam properties

The roaming bubbles represent only a small number fraction of the foam volume, of the order of a few percent. However
if this ratio is counted with respect to the liquid volume, it is larger, up to ten percent depending on φ. It can therefore
be expected that their impact is important for certain properties, such as foam drainage, where they slow down the flow
of the liquid. A study with solid spheres, located in the nodes of the liquid network of the foam, showed that such
an amount of particles in the liquid could reduce the permeability of the foam by 40% [42]. Let us mention that to
date, this effect has never been taken into account in permeability modelling. On another hand, in the production of
foamed insulation materials, the yield stress of the foamed material will prevent gravity from evacuating the roaming
bubbles: one expects to find relatively high volume fractions of roaming bubbles in such systems, as suggested by recent
work [16, 18]. Note that the stakes are high in terms of producing solid foam structures with hierarchical porosity,
including both macro- and micro-scaled pores. Such structures have recently been produced by 3D printing [6] and they
were found to present enhanced energy absorption properties and enhanced mechanical resistance to cyclic loading.

Conclusions

Coarsening studies of foam samples where the liquid fraction remains constant over periods of several days, without
any confounding effects of gravitational drainage, reveal that their natural size distribution shows a well-defined peak
towards small sizes, i.e. an excess of bubbles is observed for sizes close to 0.3〈R〉. This feature, which we show to
appear in liquid foams in the Scaling State, was not expected based on existing theories. Surprisingly, no previous
experimental study mentions the presence of these small bubbles, although we have been able to reproduce this effect
on Earth.

We show that during coarsening, when the bubbles that shrink become smaller than the size of the interstices between the
larger bubbles, they can disconnect from the network of larger bubbles: we call them roaming bubbles. The dissolution
rate of these roaming bubbles was found to be approximately constant, whatever the liquid fraction of the samples
was. The order of magnitude of the dissolution rate is consistent with calculations based on the gas transfer through
the liquid shell that surrounds the roaming bubble, or through the “contact" between one roaming bubble and larger
foam bubbles surrounding them. The key point in the accumulation of the small bubbles in the interstices formed by
the larger bubbles, is the fact that the rate of disappearance of these bubbles is much smaller than the growth rate of
the foam bubbles. This behaviour was observed for samples with liquid fraction smaller than ≈ φrcp. In contrast, for
φ > φrcp the roaming bubbles disappear at a rate which is comparable to the growth rate of the foam bubbles, which
kills the accumulation mechanism. For even larger liquid fractions, the bubble assembly will enter the regime of bubbly
liquids, where all the bubbles are expected to be roaming bubbles. As a consequence, the peak initially observed for
liquid fractions φ < φrcp shifts towards 〈R〉 and a distribution almost centered on 〈R〉, characteristic of bubbly liquids,
is eventually observed.

In closing, we have shown the existence of naturally-developed hierarchical bubble size distributions in coarsening foams.
The persistent co-existence of usual foam bubbles with small roaming bubbles, challenges our current understanding of
foam coarsening and has potential implications in the design and performance of foamy materials.
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Materials and Methods

The foams were made with aqueous solutions of a ionic surfactant, tetradecyl-trimethyl-ammonium bromide (TTAB),
with purity ≥ 99 % and used as received from Sigma-Aldrich. It was dissolved at 5 g/L in ultrapure water (resistivity
18.2 MΩ·cm). This concentration is 4 times larger than the critical micellar concentration and large enough to prevent
coalescence. The surface tension of the TTAB solution measured at room temperature is: γ = 37.1 mN/m. The Henry
solubility coefficient of the air molecules in the foaming solution is [40] He = 7.4 10−6 mol m−3 Pa−1 [40] and their
diffusion coefficient in the foaming solution is [40] Dm = 2.0 10−9 m2s−1.

The majority of the experiments were performed on board the International Space Station using the experiment container
described in [3]. In this environment, the residual gravity acceleration fluctuations are reported to be on the order of or
less than a µg, for frequencies below 0.01 Hz [37]. Each foam cell was filled on Earth with a given volume of foaming
solution (measured by weight at controlled temperature) and air, then hermetically sealed. The liquid volume fraction
φ contained in each cell was deduced from the liquid volume and the total cell volume. After the completion of the
experiments, the cells were send back to Earth and we checked that their weight had varied by less than 1%. All the
experiments were repeated three times and found reproducible, even a few months apart.

In addition, we made a Ground experiment with a foaming liquid of composition identical to that of the ISS experiments.
The foams were produced with the double syringe method [39] filled with air and a volume of the foaming solution in
order to set the liquid fraction to 7.8%±0.2%. Note that the initial bubble size distribution with this foam production is
close to that of the Scaling State. The sample was placed in a cylindrical cell (diameter 30 mm, thickness 12.8 mm)
with transparent flat faces. The cell was kept with its symmetry axis aligned in the horizontal direction and rotated
about this axis with a speed of rotation equal to 15 rpm.

Foam age is counted from the instant when the foaming process stops. Bubbles at the surface of the sample are recorded
using a video camera. Every image (such as the one shown in Fig. 1a) was analysed as described in [39]. We checked
that the radial profile of liquid fraction remained constant throughout the measurement duration, indicating that the
effect of gravity drainage was indeed counteracted and that the rotation did not induce radial drainage either.The bubble
area A deduced was from the area inside the contour of the bubbles measured using the ellipses method [39]. Finally,
the bubble radius is calculated as R =

√
A/π. In the ISS experiments, simultaneously to the video recording, the

intensity of light transmitted through the sample was recorded, which provided the average bubble size in the bulk of
the sample as explained in [39]. Our results showed that the evolution of the average bubble radius measured either at
the surface or in the bulk are similar.

We also performed numerical simulations to evaluate the random close packing liquid fraction of the bubbles. In
the framework of the molecular dynamics code LAMMPS [48], a cubic simulation box was filled by spheres with
repulsive, Hertzian interactions with radii randomly chosen from a distribution corresponding to the one we observe
experimentally for φ = 33% in the Scaling State (see Figure 4). The number of spheres was of the order of 2000,
similar to our foam coarsening experiments at the largest investigated foam ages. To fill the simulation cell, we started
with an initial cell volume so large that the sphere dispersion was highly diluted. Using the pressostat provided by
LAMMPS, we then shrunk the cubic cell and compacted these structures until a very small osmotic pressure appeared.
We then turned off the pressostat and equilibrated the sample for imposed simulation box volumes, varied by small
steps around the previous value. The close packing fraction was estimated by plotting confinement pressure versus
packing fraction, and by detecting the φ value where zero pressure is reached within numerical accuracy. We did this
for 5 different initial random seeds, and found φrcp = 30.5± 0.5%. The way you compact a packing has a large impact
on the final close packing fraction in frictional granular materials, and to a lesser extent also in frictionless systems. To
investigate this effect, we applied simulated gravity to dilute sphere dispersions as an alternative to the initial pressostat
procedure. Kinetic energy was dissipated by introducing viscous friction in the contact law. This procedure mimics
foams that form when a bubbly liquid is subjected to buoyancy, as it is common on earth. Once equilibrium was reached,
we switched off gravity, and simulated pressure versus packing fraction as previously. The final values of φrcp are within
statistical errors the same as the those obtained with the pressostat.
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Supplementary Information

Dissolution rate models

We consider the configuration illustrated in the inset of Figure 3b, where a roaming bubble of radius R is centered
in a cavity of radius Rt and surrounded by a liquid shell of thickness Rt − R. Denoting r the radial distance from
the bubble center, the gas concentrations at r = R and r = Rt are imposed by the bubble Laplace pressures, i.e.
c(R) = He (P0 + 2γ/R) and c(Rt) = He (P0 + 2γ/R32), where the local concentration at the outside boundary
of the shell is estimated as that at the surface of a bubble of average size R32. With these boundary conditions, the
dissolved gas concentration profile is only a function of the radial coordinate r. It is a solution of the steady diffusion
equation and is given by c(r)−c(R)

c(Rt)−c(R) = Rt
Rt−R (1−R/r). From Fick’s first law, the molar rate of gas transfer outwards

from the roaming bubble is equal to −4πR2Dm(dc/dr)r=R, and the resulting dissolution rate is:

Ωr =
4γDmVmHe

R

( 1
R −

1
R32

)

( 1
R −

1
Rt

)
(S1)

Values provided by equation S1 depend on estimates of the different radii that have been introduced. We choose R32

within the range of values corresponding to our experiment in the Scaling State, i.e. 300 µm . R32 . 500 µm [S40],
and we limit the ratio R/Rt within the range 0.2− 0.8 (for R/Rt . 0.2 the size of roaming bubbles is measured with
less precision, and for R/Rt & 0.8 it is difficult to be sure that the tracked bubble is still a roaming bubble). Thus, we
get values for Ωr within the range 0.75− 4 µm2/s, as represented in Figure 3b.

As explained in the main text, we noticed transient apparent contacts between the roaming bubble and either one of
the bubbles delimiting the interstice or two larger bubbles forming a corner. The underlying configuration may be a
real contact, i.e. with the formation of a liquid film that slightly flattens the bubbles, or it can be a near-contact with a
small separation distance, in which case the roaming bubble remains spherical. Since it is not possible to distinguish
between these two types of contact, we estimate the dissolution rate for both cases. First we consider the case of
the near-contact. We refer to the work of Schimming & Durian [S44], who considered the so-called kissing bubbles
configuration, where the distance h between the two spherical bubbles is such that h/R� 1. We assume two bubbles
of radii R ≈ Rt/2 ≈ R32/6 and R32 (radius of surrounding foam bubbles). The dissolution rate of the small bubble
then writes:

Ωr ≈ 2γDmVmHe

(
1

R
− 1

R32

)
× ln

(
0.8 + 0.6

R32

3 h

)
≈ 10γDmVmHe

R32
ln

(
0.8 + 0.6

R32

3 h

)
(S2)

Because of the logarithm values provided by equation S2 are weakly dependent on h. A typical value for Ωr is 2 µm2/s.

Now we consider the case of a small bubble of radius R and a big bubble of radius R32 sharing a film, of thickness h
and area A, which meets the free surface of the bubbles with a contact angle θ [S19] (cf. Fig. S7). The dissolution rate
of the small bubble is set by the Laplace pressure difference ∆P between both bubbles, which drives the gas transfer
through the contact film and sets its curvature. It writes:

Ωr ≈
DmVmHe

2π R h
∆P A (S3)

The film is a spherical cap surface with its radius of curvature R? (cf. Fig. S7) given by:

∆P =
4γ

R?
= 2γ

(
1

R
− 1

R32

)
(S4)

The surface area A = 2πR?2 (1− cos(ψ/2)). Taking the same range of bubble radii as above R ≈ Rt/2 ≈ R32/6
and for the small contact angles considered here, geometrical considerations shows that at leading order ψ/2 ≈ 5θ/7,
thus A ≈ π

2R
?2θ2. Then the dissolution rate(Eq. S5) writes:

Ωr ≈
12γDmVmHe

5 h
θ2 (S5)

Values provided by Eq. S5 depend on the film thickness and contact angle. For our foams, we have θ ≈ 4◦ [S40].
We remark that an effective film thickness in the range h ≈ 40 − 60 nm gives a dissolution rate close to the rate

1
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calculated for the kissing bubbles configuration, i.e. ≈ 2.6− 4 µm2/s. Note that the effective thickness accounts for
both the aqueous core film thickness and the effective length related to gas transfer resistance from the two surfactant
monolayers. Therefore, h ≈ 40− 60 nm may well correspond to either a Newton Black Film (NBF) with significant
monolayer effect, or to a Common Black Film (CBF) with limited monolayer effect. It seems difficult to go further in
this quantitative analysis but it is in good agreement with the effective thickness obtained from the foam coarsening rate
with the same solution [S40].

To estimate the dissolution rate when the bubble is in a corner, we can, as a first approximation, multiply the previous
values by a factor of two. For the kissing bubbles configuration we get a dissolution rate equal to the upper range of
values provided by the shell-model, i.e. 4 µm2/s. Values for roaming bubbles sharing two liquid films with neighboring
larger bubbles exceed a little bit that range, i.e. 5− 8 µm2/s. As we did not measure such high values, it suggests that
such a configuration, if it really exists, is rather rare.

Therefore, whatever the configuration considered for the roaming bubble in the interstices, we find values for its
dissolution rate that are compatible with our measurements, which gives robustness to the proposed mechanism based
on the accumulation of long-lasting roaming bubbles in the foam interstices.

Analysis of bubble size distributions

We first transformed the measured discrete histograms into continuous PDFs using a Gaussian Kernel estimation (with
bandwidth equal to 2.5 the image pixel size ≈ 14 µm). We then described the two bubble populations (either roaming
bubble or foam bubble) in the domain φ < φ? with a bimodal lognormal PDF defined as:

F = w · L(ρ;m1, σ1) + (1− w) · L(ρ;m2, σ2) (S6)

where w is the proportion of roaming bubbles in the foam, and L is a lognormal distribution parameterized as:

L(ρ;m,σ) =
1

ρσ
√

2π
exp

[
− log2 (ρ/m)

2σ2

]
. (S7)

where the shape parameter σ is the log-scale standard deviation and m is the linear-scale median. We fitted the
bimodal function to the measured PDFs, and observed that the parameter m2 = 1.66 ± 0.03(SEM) is almost
independent of the liquid fraction. In the following, we fix m2 = 1.66 and fit the other parameters. Their
variations with liquid fraction are given in Fig. S5. The results of the Kolmogorov-Smirnov statistical test [S38]
applied to the bimodal lognormal fits provide quantitative evidence for fit quality: no fit could be rejected ac-
cording to the 5% rule, and many are above 40% (with the exceptions of p(φ = 15%) = 21% and p(φ = 25%) = 14%).

Finally, since Rt should represent the maximum size of the roaming bubbles, we conjecture that it should be correlated
to the width of the roaming bubble PDF. To test this, we measure the width at the foot of the PDF L(ρ;m1, σ1) by the
normalized radius ρt estimated such that number of roaming bubbles with ρ > ρt equals the number of foam bubbles
with ρ < ρt:

(1− w)

∫ ρt

0

L(ρ;m2, σ2) = w

∫ ∞
ρt

L(ρ;m1, σ1). (S8)

We have estimated ρt(φ) up to φ = φ∗, and in Figure S6 we compare it to xn(φ). Since we employed R32 as the
reference radius in the estimation of xn, we must rescale ρt by R32 for a comparison with xn. In the range of liquid
fractions up to φ = φrcp, we find ρt 〈R〉/R32 ≈ xn, which is consistent.

Additional Figures

The additional figures support discussions in the main text. We did not include text there, the captions being self-
explanatory.
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Figure S1: Probability density function of the normalized bubble radius ρ = R/〈R〉 at different foam ages as indicated,
for a foam with liquid fraction φ = 50%. The curve corresponding to age > 20000 s represents the Scaling State
regime (observed up to 300000s - end of the experiment), for which the normalized distribution no longer evolves. This
distribution is an example of a concentrated bubbly liquid, with a single peak and a narrow distribution with bubble
sizes strictly smaller than ρ = 2.
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Figure S2: Evolution of the area of individual bubbles as a function of foam age versus the time elapsed since the end
of the foam sample production, for a series of liquid fractions. The area At = πR2

t denotes the bubble area when its
shrinking abruptly slows down (see text). Each color corresponds to the evolution of a different bubble. For samples
with φ = 30% or 38%, data were acquired in parallel with other samples. As a consequence, there are some blanks in
the image in between the vertical lines.
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Figure S3: (left) Bubble radius Rt as a function of the Sauter mean radius R32, measured at the instant of the transition
where the shrinkage rate slows down and the bubble starts to roam. A linear relation (dashed line) is fitted to the data
for each liquid fraction φ, to determine the coefficient xn(φ) defined in Eq. 3. (right) Master curve of the bubble radius
Rt plotted as a function of xn(φ) R32. The dotted line has a slope equal to unity.
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Figure S4: Image of a sample with φ = 15% in the Scaling State (foam age t = 9645s). The maximum radius of a
roaming bubble, Rt, at this foam age is predicted from the value of R32 at this age using Eq. 3. Each bubble is then
classified as a roaming (resp. foam) bubble if its radius is smaller (resp. bigger) than Rt. In the figure, roaming (resp
foam) bubbles are identified by red (resp. cyan) spots at their centers. We used the foam bubbles’ center positions to
analyze the foam structure by triangulation (black lines joining the centers in overlay). We estimated the number of
surface nodes, identified by green spots, and localized at the barycenter of the triangles. On average, we counted 1.5
roaming bubbles per node, and 1.2 nodes per foam bubble. (right) CDF of the number fraction of nodes around bubbles
as a function of their normalized radius R/R32, evaluated for the sample shown in the left. We see that the median is
very close to R = R32 which means that nearly half of the nodes are delimited by a foam bubble larger than R32. This
is consistent with the choice of R32 as the characteristic radius of foam bubbles constituting the nodes. Similar findings
are found for liquid fractions up to φrcp ≈ 31%.
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Figure S5: Variation of the fitted PDF parameters, as defined in the text (Eq. 6 and 7), with liquid fraction. a) Natural-
scale median m1 of the roaming bubbles (the median m2 = 1.66 is fixed). b) Logarithmic-scale standard deviation
: σ1 for the roaming bubble PDFs (red disks), σ2 for the foam bubble PDFs (blue diamonds). c) Relative weight w
of the roaming bubble distribution. d) Polydispersity (squares), defined as R32/〈R3〉1/3 − 1, and standard deviation
(triangles) evaluated from raw data. Error bars are of the size or smaller than the symbol size.
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Figure S6: Characteristic width of the roaming bubble PDFs ρt (defined by Eq. 8) rescaled by 〈R〉/R32 as a function of
the liquid fraction. The dotted line represents Eq. 4 with ξ = 2.2 as in fig 2c.

Figure S7: Bubbles of radii R and R32 sharing a film (in blue) due to adhesion forces accounted for by the contact
angle θ. R? is the radius of curvature of the shared film.
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